Download Free The Role Of The Cerebellum In Cognition Book in PDF and EPUB Free Download. You can read online The Role Of The Cerebellum In Cognition and write the review.

The Cerebellum and Cognition pulls together a preeminent group of authors. The cerebellum has been previously considered as a highly complex structure involved only with motor control. The cerebellum is essential to nonmotor functions, and recent research has revealed new medically important roles of the cerebellum and cognitive processes. - Selected for inclusion in Doody's Core Titles 2013, an essential collection development tool for health sciences libraries - Comprehensive coverage of cerebellum in motor control and cognition - New developments regarding the cerebellum and motor systems - Therapeutic implications of cerebellar contributions to cognition - Preeminent group of contributors
The Linguistic Cerebellum provides a comprehensive analysis of this unique part of the brain that has the most number of neurons, each operating in distinct networks to perform diverse functions. This book outlines how those distinct networks operate in relation to non-motor language skills. Coverage includes cerebellar anatomy and function in relation to speech perception, speech planning, verbal fluency, grammar processing, and reading and writing, along with a discussion of language disorders. - Discusses the neurobiology of cerebellar language functions, encompassing both normal language function and language disorders - Includes speech perception, processing, and planning - Contains cerebellar function in reading and writing - Explores how language networks give insight to function elsewhere in the brain
The brain ... There is no other part of the human anatomy that is so intriguing. How does it develop and function and why does it sometimes, tragically, degenerate? The answers are complex. In Discovering the Brain, science writer Sandra Ackerman cuts through the complexity to bring this vital topic to the public. The 1990s were declared the "Decade of the Brain" by former President Bush, and the neuroscience community responded with a host of new investigations and conferences. Discovering the Brain is based on the Institute of Medicine conference, Decade of the Brain: Frontiers in Neuroscience and Brain Research. Discovering the Brain is a "field guide" to the brainâ€"an easy-to-read discussion of the brain's physical structure and where functions such as language and music appreciation lie. Ackerman examines: How electrical and chemical signals are conveyed in the brain. The mechanisms by which we see, hear, think, and pay attentionâ€"and how a "gut feeling" actually originates in the brain. Learning and memory retention, including parallels to computer memory and what they might tell us about our own mental capacity. Development of the brain throughout the life span, with a look at the aging brain. Ackerman provides an enlightening chapter on the connection between the brain's physical condition and various mental disorders and notes what progress can realistically be made toward the prevention and treatment of stroke and other ailments. Finally, she explores the potential for major advances during the "Decade of the Brain," with a look at medical imaging techniquesâ€"what various technologies can and cannot tell usâ€"and how the public and private sectors can contribute to continued advances in neuroscience. This highly readable volume will provide the public and policymakersâ€"and many scientists as wellâ€"with a helpful guide to understanding the many discoveries that are sure to be announced throughout the "Decade of the Brain."
The Cerebellum provides a concise, accessible overview of modern data on physiology and function of the cerebellum as it relates to learning, plasticity, and neurodegenerative diseases. Encompassing anatomy and physiology, theoretical work, cellular mechanisms, clinical research, and disorders, the book covers learning and plasticity while introducing the anatomy of the cerebellum. Known and proposed "functions of the cerebellum" are addressed on clinical, physiological, cellular, and computational levels, providing academics, researchers, medical students, and graduate students with an invaluable reference.
During the last three decades, many laboratories worldwide have dedicated their research activities to understanding the roles of the cerebellum in motor control, cognitive processes and the biology of mental processes, behavioral symptoms and emotion. These advances have been associated with discoveries of new clinical disorders, in particular in the field of genetic ataxias, and the growing number of diseases presents a source of difficulty for clinicians during daily practice. This practical guide summarizes and evaluates current knowledge in the field of cerebellar disorders. Encompassing details of both common and uncommon cerebellar ataxias, including vascular, immune, neoplastic, infectious, traumatic, toxic and inherited disorders, this book will assist clinicians in the diagnosis and management of the full spectrum of cerebellar ataxias encountered in daily practice. Essential reading for clinicians, including general practitioners, neurologists, pediatricians, radiologists, psychiatrists and neuropsychologists, this will also prove a valuable tool for students, trainees and researchers.
How we raise young children is one of today's most highly personalized and sharply politicized issues, in part because each of us can claim some level of "expertise." The debate has intensified as discoveries about our development-in the womb and in the first months and years-have reached the popular media. How can we use our burgeoning knowledge to assure the well-being of all young children, for their own sake as well as for the sake of our nation? Drawing from new findings, this book presents important conclusions about nature-versus-nurture, the impact of being born into a working family, the effect of politics on programs for children, the costs and benefits of intervention, and other issues. The committee issues a series of challenges to decision makers regarding the quality of child care, issues of racial and ethnic diversity, the integration of children's cognitive and emotional development, and more. Authoritative yet accessible, From Neurons to Neighborhoods presents the evidence about "brain wiring" and how kids learn to speak, think, and regulate their behavior. It examines the effect of the climate-family, child care, community-within which the child grows.
This important volume brings together significant findings on the neural bases of spoken language –its processing, use, and organization, including its phylogenetic roots. Employing a potent mix of conceptual and neuroimaging-based approaches, contributors delve deeply into specialized structures of the speech system, locating sensory and cognitive mechanisms involved in listening and comprehension, grasping meanings and storing memories. The novel perspectives revise familiar models by tracing linguistic interactions within and between neural systems, homing in on the brain’s semantic network, exploring the neuroscience behind bilingualism and multilingual fluency, and even making a compelling case for a more nuanced participation of the motor system in speech. From these advances, readers have a more three-dimensional picture of the brain—its functional epicenters, its connections, and the whole—as the seat of language in both wellness and disorders. Included in the topics: · The interaction between storage and computation in morphosyntactic processing. · The role of language in structure-dependent cognition. · Multisensory integration in speech processing: neural mechanisms of cross-modal after-effect. · A neurocognitive view of the bilingual brain. · Causal modeling: methods and their application to speech and language. · A word in the hand: the gestural origins of language. Neural Mechanisms of Language presents a sophisticated mix of detail and creative approaches to understanding brain structure and function, giving neuropsychologists, cognitive neuroscientists, developmental psychologists, cognitive psychologists, and speech/language pathologists new windows onto the research shaping their respective fields.
First released in the Spring of 1999, How People Learn has been expanded to show how the theories and insights from the original book can translate into actions and practice, now making a real connection between classroom activities and learning behavior. This edition includes far-reaching suggestions for research that could increase the impact that classroom teaching has on actual learning. Like the original edition, this book offers exciting new research about the mind and the brain that provides answers to a number of compelling questions. When do infants begin to learn? How do experts learn and how is this different from non-experts? What can teachers and schools do-with curricula, classroom settings, and teaching methodsâ€"to help children learn most effectively? New evidence from many branches of science has significantly added to our understanding of what it means to know, from the neural processes that occur during learning to the influence of culture on what people see and absorb. How People Learn examines these findings and their implications for what we teach, how we teach it, and how we assess what our children learn. The book uses exemplary teaching to illustrate how approaches based on what we now know result in in-depth learning. This new knowledge calls into question concepts and practices firmly entrenched in our current education system. Topics include: How learning actually changes the physical structure of the brain. How existing knowledge affects what people notice and how they learn. What the thought processes of experts tell us about how to teach. The amazing learning potential of infants. The relationship of classroom learning and everyday settings of community and workplace. Learning needs and opportunities for teachers. A realistic look at the role of technology in education.
Our knowledge of cerebellar functions and cerebellar disorders, called ataxias, is increasing considerably. Studies of the cerebellum are now a central focus in neuroscience. During the last four decades, many laboratories worldwide have dedicated their research activities to understanding the roles of the cerebellum in motor control, cognitive processes and biology of mental processes, behavioral symptoms, and emotion. It is now accepted that the cerebellum acts as a cognitive operator in learning, perception, and attention. Moreover, major improvements in our assessment of in vivo cerebellar architecture using imaging techniques have occurred. A typical example is the accurate description of cerebellar anatomy during fetal development with MRI, a progress which has direct impacts on patient care. These advances have been associated with discoveries of new clinical disorders, in particular in the field of genetic ataxias. More than 20 new genes have been identified these last 10 years. Only for dominant ataxias, more than 30 diseases have now been unravelled. The number of ataxic disorders will increase with aging, the cerebellum being the structure of the brain with the most important loss of neurons with age. More than 300 different cerebellar disorders are encountered during daily practice, but we are missing a single source of information explaining their pathogenesis. Despite the immense amount of knowledge acquired about the cerebellar circuitry these last years, a large book covering the neuroscience of the cerebellum is missing. The goal of this endeavour is to bring up to date information relevant for basic science and also for clinical activities. To reach this goal, the most renowned authors are gathered in a unique and in-depth book with a format of a handbook. We emphasize the connections between molecular findings, imaging features, behavioural/neuropsychological aspects, and clinical implications.
A comprehensive survey of dysfunction due to stroke, this revised edition remains the definitive guide to stroke patterns and syndromes.