Download Free The Role Of Early Visual Cortex In Global Motion Processing Book in PDF and EPUB Free Download. You can read online The Role Of Early Visual Cortex In Global Motion Processing and write the review.

volume 1 of a 3 volume art book set of colourful figure drawings created with Crayola Crayons
The best example of filling-in involves the blind spot, a region of the retina devoid of photoreceptors. While this phenomenon is common in the visual domain, it is argued by contributors to this book that forms of filling-in also take place in other sensory modalities.
The brain's ability to detect movement within the retinal image is crucial not only for determining the trajectories of moving objects, but also for identifying and interpreting image motion resulting from eye and head movements. This book summarizes our knowledge of how information about image motion is encoded in the brain. Key Features * Valuable reference source for those involved in the rapidly expanding area of motion perception * Strong emphasis on integration of physiological, computation, and psychophysical approaches * Topics include: * Principles of local motion detection * Inputs to local motion detectors * Integration of motion signals * Higher-order interpretation of motion * Motion detection and eye movements
When we walk, drive a car, or fly an airplane, visual motion is used to control and guide our movement. Optic flow describes the characteristic pattern of visual motion that arises in these situations. This book is the first to take an in-depth look at the neuronal processing strategies that underlie the brain's ability to analyze and use optic flow for the control of self-motion. It does so in a variety of species which use optic flow in different behavioral contexts. The spectrum ranges from flying insects to birds, higher mammals and man. The contributions cover physiological and behavioral studies as well as computational models. Neuronal Processing of Optic Flow provides an authoritative and comprehensive overview of the current state of research on this topic written by a group of authors who have made essential contributions to shaping this field of research over the last ten years. - Provides the first detailed overview of the analysis of complex visual motion patterns in the brain - Includes physiological, behavioral, and computational aspects of optic flow processing - Highlights similarities and differences between different animal species and behavioral tasks - Covers human patients with visual motion deficits - Enhances the reader's understanding with many illustrations
Biology and Diseases of the Ferret, Third Edition has been thoroughly revised and updated to provide a current, comprehensive reference on the ferret. Encyclopedic in scope, it is the only book to focus on the characteristics that make the ferret an important research animal, with detailed information on conditions, procedures, and treatments. Offering basic information on biology, husbandry, clinical medicine, and surgery, as well as unique information on the use of ferrets in biomedical research, Biology and Diseases of the Ferret is an essential resource for investigators using ferrets in the laboratory and for companion animal and comparative medicine veterinarians. The Third Edition adds ten completely new chapters, covering regulatory considerations, black-footed ferret recovery, diseases of the cardiovascular system, viral respiratory disease research, morbillivirus research, genetic engineering, hearing and auditory function, vision and neuroplasticity research, nausea and vomiting research, and lung carcinogenesis research. Additionally, the anesthesia, surgery, and biomethodology chapter has been subdivided into three and thoroughly expanded. The book also highlights the ferret genome project, along with the emerging technology of genetically engineered ferrets, which is of particular importance to the future of the ferret as an animal model in research and will allow the investigation of diseases and their genetic basis in a small, easily maintained, non-rodent species.
The Senses: A Comprehensive Reference, Second Edition, Seven Volume Set is a comprehensive reference work covering the range of topics that constitute current knowledge of the neural mechanisms underlying the different senses. This important work provides the most up-to-date, cutting-edge, comprehensive reference combining volumes on all major sensory modalities in one set. Offering 264 chapters from a distinguished team of international experts, The Senses lays out current knowledge on the anatomy, physiology, and molecular biology of sensory organs, in a collection of comprehensive chapters spanning 4 volumes. Topics covered include the perception, psychophysics, and higher order processing of sensory information, as well as disorders and new diagnostic and treatment methods. Written for a wide audience, this reference work provides students, scholars, medical doctors, as well as anyone interested in neuroscience, a comprehensive overview of the knowledge accumulated on the function of sense organs, sensory systems, and how the brain processes sensory input. As with the first edition, contributions from leading scholars from around the world will ensure The Senses offers a truly international portrait of sensory physiology. The set is the definitive reference on sensory neuroscience and provides the ultimate entry point into the review and original literature in Sensory Neuroscience enabling students and scientists to delve into the subject and deepen their knowledge. All-inclusive coverage of topics: updated edition offers readers the only current reference available covering neurobiology, physiology, anatomy, and molecular biology of sense organs and the processing of sensory information in the brain Authoritative content: world-leading contributors provide readers with a reputable, dynamic and authoritative account of the topics under discussion Comprehensive-style content: in-depth, complex coverage of topics offers students at upper undergraduate level and above full insight into topics under discussion
A comprehensive review of contemporary research in the vision sciences, reflecting the rapid advances of recent years. Visual science is the model system for neuroscience, its findings relevant to all other areas. This essential reference to contemporary visual neuroscience covers the extraordinary range of the field today, from molecules and cell assemblies to systems and therapies. It provides a state-of-the art companion to the earlier book The Visual Neurosciences (MIT Press, 2003). This volume covers the dramatic advances made in the last decade, offering new topics, new authors, and new chapters. The New Visual Neurosciences assembles groundbreaking research, written by international authorities. Many of the 112 chapters treat seminal topics not included in the earlier book. These new topics include retinal feature detection; cortical connectomics; new approaches to mid-level vision and spatiotemporal perception; the latest understanding of how multimodal integration contributes to visual perception; new theoretical work on the role of neural oscillations in information processing; and new molecular and genetic techniques for understanding visual system development. An entirely new section covers invertebrate vision, reflecting the importance of this research in understanding fundamental principles of visual processing. Another new section treats translational visual neuroscience, covering recent progress in novel treatment modalities for optic nerve disorders, macular degeneration, and retinal cell replacement. The New Visual Neurosciences is an indispensable reference for students, teachers, researchers, clinicians, and anyone interested in contemporary neuroscience. Associate Editors Marie Burns, Joy Geng, Mark Goldman, James Handa, Andrew Ishida, George R. Mangun, Kimberley McAllister, Bruno Olshausen, Gregg Recanzone, Mandyam Srinivasan, W.Martin Usrey, Michael Webster, David Whitney Sections Retinal Mechanisms and Processes Organization of Visual Pathways Subcortical Processing Processing in Primary Visual Cortex Brightness and Color Pattern, Surface, and Shape Objects and Scenes Time, Motion, and Depth Eye Movements Cortical Mechanisms of Attention, Cognition, and Multimodal Integration Invertebrate Vision Theoretical Perspectives Molecular and Developmental Processes Translational Visual Neuroscience
Motion perception lies at the heart of the scientific study of vision. The motion aftereffect (MAE) is the appearance of directional movement in a stationary object or scene after the viewer has been exposed to viusal motion in the opposite direction. For example, after one has looked at a waterfall for a period of time, the scene beside the waterfall may appear to move upward when one's gaze is transfered to it. Although the phenomenon seems simple, research has revealed copmlexities in the underlying mechanisms, and offered general lessons about how the brain processes visual information. In the 1990s alone, more than 200 papers have been published on MAE, largely inspired by improved techniques for examining brain electrophysiology and by emerging new theories of motion perception.