Download Free The Role Of Aerosols In Materials Processing Book in PDF and EPUB Free Download. You can read online The Role Of Aerosols In Materials Processing and write the review.

Aerosol Processing of Materials offers a comprehensive look at advanced materials processing by aerosol methods. This self-contained volume examines in-depth what it takes to generate powders and films with specialized characteristics using gas-phase processes. In three main parts, it addresses particle formation by intraparticle reaction, particle formation by gas-to-particle conversion, and film formation. All aspects of these subjects are considered, from the basic principles and chemistry of aerosols to processing methods and the characterization of materials. The text incorporates an impressive array of examples involving materials such as metals, metal oxides, and metal sulfides for application in pigments, ceramics superconductors, electronics, sensors, glass coatings, semiconductors, optical materials, and thick films.
This textbook aims to be a one stop shop for those interested in aerosols and their impact on the climate system. It starts with some fundamentals on atmospheric aerosols, atmospheric radiation and cloud physics, then goes into techniques used for in-situ and remote sensing measurements of aerosols, data assimilation, and discusses aerosol-radiation interactions, aerosol-cloud interactions and the multiple impacts of aerosols on the climate system. The book aims to engage those interested in aerosols and their impacts on the climate system: graduate and PhD students, but also post-doctorate fellows who are new to the field or would like to broaden their knowledge. The book includes exercises at the end of most chapters. Atmospheric aerosols are small (microscopic) particles in suspension in the atmosphere, which play multiple roles in the climate system. They interact with the energy budget through scattering and absorption of solar and terrestrial radiation. They also serve as cloud condensation and ice nuclei with impacts on the formation, evolution and properties of clouds. Finally aerosols also interact with some biogeochemical cycles. Anthropogenic emissions of aerosols are responsible for a cooling effect that has masked part of the warming due to the increased greenhouse effect since pre-industrial time. Natural aerosols also respond to climate changes as shown by observations of past climates and modelling of the future climate.
Ein Blick auf die morphologischen, physikalischen und chemischen Eigenschaften von Aerosolen aus den unterschiedlichsten natürlichen und anthropogenen Quellen trägt zum besseren Verständnis der Rolle bei, die Aerosolpartikel bei der Streuung und Absorption kurz- und langwelliger Strahlung spielen. Dieses Fachbuch bietet Informationen, die sonst schwer zu finden sind, und vermittelt ausführlich die Kenntnisse, die erforderlich sind, um die mikrophysikalischen, chemischen und Strahlungsparameter zu charakterisieren, die bei der Wechselwirkung von Sonnen- und Erdstrahlen so überaus wichtig sind. Besonderes Augenmerk liegt auf den indirekten Auswirkungen von Aerosolen auf das Klima im Rahmen des komplexen Systems aus Aerosolen, Wolken und der Atmosphäre. Auch geht es vorrangig um die Wirkungen natürlicher und anthropogener Aerosole auf die Luftqualität und die Umwelt, auf die menschliche Gesundheit und unser kulturelles Erbe. Mit einem durchgängig lösungsorientierten Ansatz werden nicht nur die Probleme und Gefahren dieser Aerosole behandelt, sondern auch praktikable Lösungswege aufgezeigt.
Aerosol particles are ubiquitous in the Earth’s atmosphere and are central to many environmental issues such as climate change, stratospheric ozone depletion and air quality. In urban environments, aerosol particles can affect human health through their inhalation. Atmospheric aerosols originate from naturally occurring processes, such as volcanic emissions, sea spray and mineral dust emissions, or from anthropogenic activity such as industry and combustion processes. Aerosols present pathways for reactions, transport, and deposition that would not occur in the gas phase alone. Understanding the ways in which aerosols behave, evolve, and exert these effects requires knowledge of their formation and removal mechanism, transport processes, as well as their physical and chemical characteristics. Motivated by climate change and adverse health effects of traffic-related air pollution, aerosol research has intensified over the past couple of decades, and recent scientific advances offer an improved understanding of the mechanisms and factors controlling the chemistry of atmospheric aerosols. Environmental Chemistry of Aerosols brings together the current state of knowledge of aerosol chemistry, with chapters written by international leaders in the field. It will serve as an authoritative and practical reference for scientists studying the Earth’s atmosphere and as an educational and training resource for both postgraduate students and professional atmospheric scientists.
AEROSOL SCIENCE TECHNOLOGY AND APPLICATIONS Aerosols influence many areas of our daily life. They are at the core of environmental problems such as global warming, photochemical smog and poor air quality. They can also have diverse effects on human health, where exposure occurs in both outdoor and indoor environments. However, aerosols can have beneficial effects too; the delivery of drugs to the lungs, the delivery of fuels for combustion and the production of nanomaterials all rely on aerosols. Advances in particle measurement technologies have made it possible to take advantage of rapid changes in both particle size and concentration. Likewise, aerosols can now be produced in a controlled fashion. Reviewing many technological applications together with the current scientific status of aerosol modelling and measurements, this book includes: Satellite aerosol remote sensing The effects of aerosols on climate change Air pollution and health Pharmaceutical aerosols and pulmonary drug delivery Bioaerosols and hospital infections Particle emissions from vehicles The safety of emerging nanomaterials Radioactive aerosols: tracers of atmospheric processes With the importance of this topic brought to the public's attention after the eruption of the Icelandic volcano Eyjafjallajökull, this book provides a timely, concise and accessible overview of the many facets of aerosol science.
Nanophase Materials is the first and, as yet, the only comprehensive book published in this new and exciting area of materials science. It gives a broad overview of the revolutionary new field of nanophase materials; a view which spans the materials, physics, and chemistry research communities at a tutorial level that is suitable for advanced undergraduates, graduate students, postdoctoral researchers, and experts or would-be experts in the science of nanostructured materials. The articles are authored by many of the world's most prominent scientists in this field. The book covers the diverse methods for synthesizing nanophase materials, a variety of subsequent processing methodologies, what is known about the structures of these materials on various length scales from atomic to macroscopic, and the properties of these unique and novel materials. The materials properties covered are mechanical, electronic, optical, and magnetic and hence span a wide range of important new opportunities for technological applications.
Aerosol Measurement: Principles, Techniques, and Applications Third Edition is the most detailed treatment available of the latest aerosol measurement methods. Drawing on the know-how of numerous expert contributors; it provides a solid grasp of measurement fundamentals and practices a wide variety of aerosol applications. This new edition is updated to address new and developing applications of aerosol measurement, including applications in environmental health, atmospheric science, climate change, air pollution, public health, nanotechnology, particle and powder technology, pharmaceutical research and development, clean room technology (integrated circuit manufacture), and nuclear waste management.
This book includes basic knowledge and understanding on the characteristics of aerosols over the continent and oceanic regions, their composition, residence times, sinks and size distributions, and their effects in the radiative transfer and climate of Earth.
Aerosol science and engineering is a vibrant field of particle technology and chemical reaction engineering. The book presents a timely account of this interdisciplinary topic and its various application areas. It will be of interest to scientists or engineers active in aerosol physics, aerosol or colloid chemistry, atmospheric processes, and chemical, mechanical, environmental and/or materials engineering.
Nanoparticle technology, which handles the preparation, processing, application and characterisation of nanoparticles, is a new and revolutionary technology. It becomes the core of nanotechnology as an extension of the conventional Fine Particle / Powder Technology. Nanoparticle technology plays an important role in the implementation of nanotechnology in many engineering and industrial fields including electronic devices, advanced ceramics, new batteries, engineered catalysts, functional paint and ink, Drug Delivery System, biotechnology, etc.; and makes use of the unique properties of the nanoparticles which are completely different from those of the bulk materials.This new handbook is the first to explain complete aspects of nanoparticles with many application examples showing their advantages and advanced development. There are handbooks which briefly mention the nanosized particles or their related applications, but no handbook describing the complete aspects of nanoparticles has been published so far.The handbook elucidates of the basic properties of nanoparticles and various nanostructural materials with their characterisation methods in the first part. It also introduces more than 40 examples of practical and potential uses of nanoparticles in the later part dealing with applications. It is intended to give readers a clear picture of nanoparticles as well as new ideas or hints on their applications to create new materials or to improve the performance of the advanced functional materials developed with the nanoparticles.* Introduces all aspects of nanoparticle technology, from the fundamentals to applications.* Includes basic information on the preparation through to the characterization of nanoparticles from various viewpoints * Includes information on nanostructures, which play an important role in practical applications.