Download Free The Quantization Dimension Of Self Similar Probabilities Book in PDF and EPUB Free Download. You can read online The Quantization Dimension Of Self Similar Probabilities and write the review.

Due to the rapidly increasing need for methods of data compression, quantization has become a flourishing field in signal and image processing and information theory. The same techniques are also used in statistics (cluster analysis), pattern recognition, and operations research (optimal location of service centers). The book gives the first mathematically rigorous account of the fundamental theory underlying these applications. The emphasis is on the asymptotics of quantization errors for absolutely continuous and special classes of singular probabilities (surface measures, self-similar measures) presenting some new results for the first time. Written for researchers and graduate students in probability theory the monograph is of potential interest to all people working in the disciplines mentioned above.
This book collects significant contributions from the fifth conference on Fractal Geometry and Stochastics held in Tabarz, Germany, in March 2014. The book is divided into five topical sections: geometric measure theory, self-similar fractals and recurrent structures, analysis and algebra on fractals, multifractal theory, and random constructions. Each part starts with a state-of-the-art survey followed by papers covering a specific aspect of the topic. The authors are leading world experts and present their topics comprehensibly and attractively. Both newcomers and specialists in the field will benefit from this book.
This volume contains the latest results in the fields of quantum probability and infinite dimensional analysis. The contributions range from classical probability, 'pure' functional analysis and foundations of quantum mechanics to applications in mathematical physics, quantum information theory and modern mathematical finance. This diversity illustrates that research in quantum probability and infinite dimensional analysis is very active and strongly involved in modern mathematical developments and applications.
Integrable quantum field theories and integrable lattice models have been studied for several decades, but during the last few years new ideas have emerged that have considerably changed the topic. The first group of papers published here is concerned with integrable structures of quantum lattice models related to quantum group symmetries. The second group deals with the description of integrable structures in two-dimensional quantum field theories, especially boundary problems, thermodynamic Bethe ansatz and form factor problems. Finally, a major group of papers is concerned with the purely mathematical framework that underlies the physically-motivated research on quantum integrable models, including elliptic deformations of groups, representation theory of non-compact quantum groups, and quantization of moduli spaces.
Mathematical finance is a prolific scientific domain in which there exists a particular characteristic of developing both advanced theories and practical techniques simultaneously. Mathematical Modelling and Numerical Methods in Finance addresses the three most important aspects in the field: mathematical models, computational methods, and applications, and provides a solid overview of major new ideas and results in the three domains. - Coverage of all aspects of quantitative finance including models, computational methods and applications - Provides an overview of new ideas and results - Contributors are leaders of the field
This book presents the refereed proceedings of the Seventh International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, held in Ulm, Germany, in August 2006. The proceedings include carefully selected papers on many aspects of Monte Carlo and quasi-Monte Carlo methods and their applications. They also provide information on current research in these very active areas.
Recent Developments in Infinite-Dimensional Analysis and Quantum Probability is dedicated to Professor Takeyuki Hida on the occasion of his 70th birthday. The book is more than a collection of articles. In fact, in it the reader will find a consistent editorial work, devoted to attempting to obtain a unitary picture from the different contributions and to give a comprehensive account of important recent developments in contemporary white noise analysis and some of its applications. For this reason, not only the latest results, but also motivations, explanations and connections with previous work have been included. The wealth of applications, from number theory to signal processing, from optimal filtering to information theory, from the statistics of stationary flows to quantum cable equations, show the power of white noise analysis as a tool. Beyond these, the authors emphasize its connections with practically all branches of contemporary probability, including stochastic geometry, the structure theory of stationary Gaussian processes, Neumann boundary value problems, and large deviations.
This book contains select contributions presented at the International Conference on Nonlinear Applied Analysis and Optimization (ICNAAO-2021), held at the Department of Mathematics Sciences, Indian Institute of Technology (BHU) Varanasi, India, from 21–23 December 2021. The book discusses topics in the areas of nonlinear analysis, fixed point theory, dynamical systems, optimization, fractals, applications to differential/integral equations, signal and image processing, and soft computing, and exposes the young talents with the newer dimensions in these areas with their practical approaches and to tackle the real-life problems in engineering, medical and social sciences. Scientists from the U.S.A., Austria, France, Mexico, Romania, and India have contributed their research. All the submissions are peer reviewed by experts in their fields.