Download Free The Psychology Of Algebra Book in PDF and EPUB Free Download. You can read online The Psychology Of Algebra and write the review.

This book offers an innovative introduction to the psychological basis of mathematics and the nature of mathematical thinking and learning, using an approach that empowers students by fostering their own construction of mathematical structures. Through accessible and engaging writing, award-winning mathematician and educator Anderson Norton reframes mathematics as something that exists first in the minds of students, rather than something that exists first in a textbook. By exploring the psychological basis for mathematics at every level—including geometry, algebra, calculus, complex analysis, and more—Norton unlocks students’ personal power to construct mathematical objects based on their own mental activity and illustrates the power of mathematics in organizing the world as we know it. Including reflections and activities designed to inspire awareness of the mental actions and processes coordinated in practicing mathematics, the book is geared toward current and future secondary and elementary mathematics teachers who will empower the next generation of mathematicians and STEM majors. Those interested in the history and philosophy that underpins mathematics will also benefit from this book, as well as those informed and curious minds attentive to the human experience more generally.
This classic text presents problems of learning and teaching mathematics from both a psychological and mathematical perspective. The Psychology of Learning Mathematics, already translated into six languages (including Chinese and Japanese), has been revised for this American Edition to include the author's most recent findings on the formation of mathematical concepts, different kinds of imagery, interpersonal and emotional factors, and a new model of intelligence. The author contends that progress in the areas of learning and teaching mathematics can only be made when such factors as the abstract and hierarchical nature of mathematics, the relation to mathematical symbolism and the distinction between intelligent learning and rote memorization are taken into account and instituted in the classroom.
Compilation of the research produced by the International Group for the Psychology of Mathematics Education (PME) since its creation in 1976. The first three sections summarize cognitively-oriented research on learning and teaching specific content areas, transversal areas, and based on technology-rich environments. The fourth section is devoted to the research on social, affective, cultural and cognitive aspects of mathematics education. The fifth section includes two chapters summarizing the PME research on teacher training and professional life of mathematics teachers.
Published in 1981, Psychology of Mathematics for Instruction is a valuable contribution to the field of Education.
Since its establishment in 1976, PME (The International Group for the Psychology of Mathematics Education) is serving as a much sought after venue for scientific debate among those at the cutting edge of the field, as well as an engine for the development of research in mathematics education. A wide range of research activities conducted over the last ten years by PME members and their colleagues are documented and critically reviewed in this handbook, released to celebrate the Group’s 40 year anniversary milestone. The book is divided into four main sections: Cognitive aspects of learning and teaching content areas; Cognitive aspects of learning and teaching transverse areas; Social aspects of learning and teaching mathematics; and Professional aspects of teaching mathematics. The selection for each chapter of a team of at least two authors, mostly located in different parts of the world, ensured effective coverage of each field. High quality was further enhanced by the scrupulous review of early chapter drafts by two leaders in the relevant field. The resulting volume with its compilation of the most relevant aspects of research in the field, and its emphasis on trends and future developments, will be a rich and welcome resource for both mature and emerging researchers in mathematics education.
This book takes a theoretical perspective on the study of school algebra, in which both semiotics and history occur. The Methodological design allows for the interpretation of specific phenomena and the inclusion of evidence not addressed in more general treatments. The book gives priority to "meaning in use" over "formal meaning". These approaches and others of similar nature lead to a focus on competence rather than a user’s activity with mathematical language.
In The Algebraic Mind, Gary Marcus attempts to integrate two theories about how the mind works, one that says that the mind is a computer-like manipulator of symbols, and another that says that the mind is a large network of neurons working together in parallel. Resisting the conventional wisdom that says that if the mind is a large neural network it cannot simultaneously be a manipulator of symbols, Marcus outlines a variety of ways in which neural systems could be organized so as to manipulate symbols, and he shows why such systems are more likely to provide an adequate substrate for language and cognition than neural systems that are inconsistent with the manipulation of symbols. Concluding with a discussion of how a neurally realized system of symbol-manipulation could have evolved and how such a system could unfold developmentally within the womb, Marcus helps to set the future agenda of cognitive neuroscience.
To many outsiders, mathematicians appear to think like computers, grimly grinding away with a strict formal logic and moving methodically--even algorithmically--from one black-and-white deduction to another. Yet mathematicians often describe their most important breakthroughs as creative, intuitive responses to ambiguity, contradiction, and paradox. A unique examination of this less-familiar aspect of mathematics, How Mathematicians Think reveals that mathematics is a profoundly creative activity and not just a body of formalized rules and results. Nonlogical qualities, William Byers shows, play an essential role in mathematics. Ambiguities, contradictions, and paradoxes can arise when ideas developed in different contexts come into contact. Uncertainties and conflicts do not impede but rather spur the development of mathematics. Creativity often means bringing apparently incompatible perspectives together as complementary aspects of a new, more subtle theory. The secret of mathematics is not to be found only in its logical structure. The creative dimensions of mathematical work have great implications for our notions of mathematical and scientific truth, and How Mathematicians Think provides a novel approach to many fundamental questions. Is mathematics objectively true? Is it discovered or invented? And is there such a thing as a "final" scientific theory? Ultimately, How Mathematicians Think shows that the nature of mathematical thinking can teach us a great deal about the human condition itself.
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.