Download Free The Physics And Parameterization Of Moist Atmospheric Convection Book in PDF and EPUB Free Download. You can read online The Physics And Parameterization Of Moist Atmospheric Convection and write the review.

An up-to-date summary of our understanding of the dynamics and thermodynamics of moist atmospheric convection, with a strong focus on recent developments in the field. The book also reviews ways in which moist convection may be parameterised in large-scale numerical models - a field in which there is still some controversy - and discusses the implications of convection for large-scale flow. Audience: The book is aimed at the graduate level and research meteorologists as well as scientists in other disciplines who need to know more about moist convection and its representation in numerical models.
Precipitating atmospheric convection is fundamental to the Earth's weather and climate. It plays a leading role in the heat, moisture and momentum budgets. Appropriate modelling of convection is thus a prerequisite for reliable numerical weather prediction and climate modelling. The current standard approach is to represent it by subgrid-scale convection parameterization.Parameterization of Atmospheric Convection provides, for the first time, a comprehensive presentation of this important topic. The two-volume set equips readers with a firm grasp of the wide range of important issues, and thorough coverage is given of both the theoretical and practical aspects. This makes the parameterization problem accessible to a wider range of scientists than before. At the same time, by providing a solid bottom-up presentation of convection parameterization, this set is the definitive reference point for atmospheric scientists and modellers working on such problems.Volume 1 of this two-volume set focuses on the basic principles: introductions to atmospheric convection and tropical dynamics, explanations and discussions of key parameterization concepts, and a thorough and critical exploration of the mass-flux parameterization framework, which underlies the methods currently used in almost all operational models and at major climate modelling centres. Volume 2 focuses on the practice, which also leads to some more advanced fundamental issues. It includes: perspectives on operational implementations and model performance, tailored verification approaches, the role and representation of cloud microphysics, alternative parameterization approaches, stochasticity, criticality, and symmetry constraints.
An Introduction to Clouds provides a fundamental understanding of clouds, ranging from cloud microphysics to the large-scale impacts of clouds on climate. On the microscale, phase changes and ice nucleation are covered comprehensively, including aerosol particles and thermodynamics relevant for the formation of clouds and precipitation. At larger scales, cloud dynamics, mid-latitude storms and tropical cyclones are discussed leading to the role of clouds on the hydrological cycle and climate. Each chapter ends with problem sets and multiple-choice questions that can be completed online, and important equations are highlighted in boxes for ease of reference. Combining mathematical formulations with qualitative explanations of underlying concepts, this accessible book requires relatively little previous knowledge, making it ideal for advanced undergraduate and graduate students in atmospheric science, environmental sciences and related disciplines.
This book presents descriptions of numerical models for testing cumulus in cloud fields. It is divided into six parts. Part I provides an overview of the problem, including descriptions of cumulus clouds and the effects of ensembles of cumulus clouds on mass, momentum, and vorticity distributions. A review of closure assumptions is also provided. A review of "classical" convection schemes in widespread use is provided in Part II. The special problems associated with the representation of convection in mesoscale models are discussed in Part III, along with descriptions of some of the commonly used mesoscale schemes. Part IV covers some of the problems associated with the representation of convection in climate models, while the parameterization of slantwise convection is the subject of Part V.
This volume presents a series of overview articles arising from a workshop exploring the links among shallow clouds, water vapor, circulation, and climate sensitivity. It provides a state-of-the art synthesis of understanding about the coupling of clouds and water vapor to the large-scale circulation. The emphasis is on two phenomena, namely the self-aggregation of deep convection and interactions between low clouds and the large-scale environment, with direct links to the sensitivity of climate to radiative perturbations. Each subject is approached using simulations, observations, and synthesizing theory; particular attention is paid to opportunities offered by new remote-sensing technologies, some still prospective. The collection provides a thorough grounding in topics representing one of the World Climate Research Program’s Grand Challenges. Previously published in Surveys in Geophysics, Volume 38, Issue 6, 2017 The aritcles “Observing Convective Aggregation”, “An Observational View of Relationships Between Moisture Aggregation, Cloud, and Radiative Heating Profiles”, “Implications of Warm Rain in Shallow Cumulus and Congestus Clouds for Large-Scale Circulations”, “A Survey of Precipitation-Induced Atmospheric Cold Pools over Oceans and Their Interactions with the Larger-Scale Environment”, “Low-Cloud Feedbacks from Cloud-Controlling Factors: A Review”, “Mechanisms and Model Diversity of Trade-Wind Shallow Cumulus Cloud Feedbacks: A Review”, “Structure and Dynamical Influence of Water Vapor in the Lower Tropical Troposphere”, “Emerging Technologies and Synergies for Airborne and Space-Based Measurements of Water Vapor Profiles”, “Observational Constraints on Cloud Feedbacks: The Role of Active Satellite Sensors”, and “EUREC4A: A Field Campaign to Elucidate the Couplings Between Clouds, Convection and Circulation” are available as open access articles under a CC BY 4.0 license at link.springer.com.
Studies of convection in geophysical flows constitute an advanced and rapidly developing area of research that is relevant to problems of the natural environment. During the last decade, significant progress has been achieved in the field as a result of both experimental studies and numerical modelling. This led to the principal revision of the widely held view on buoyancy-driven turbulent flows comprising an organised mean component with superimposed chaotic turbulence. An intermediate type of motion, represented by coherent structures, has been found to play a key role in geophysical boundary layers and in larger scale atmospheric and hydrospheric circulations driven by buoyant forcing. New aspects of the interaction between convective motions and rotation have recently been discovered and investigated. Extensive experimental data have also been collected on the role of convection in cloud dynamics and microphysics. New theoretical concepts and approaches have been outlined regarding scaling and parameterization of physical processes in buoyancy-driven geophysical flows. The book summarizes interdisciplinary studies of buoyancy effects in different media (atmosphere and hydrosphere) over a wide range of scales (small scale phenomena in unstably stratified and convectively mixed layers to deep convection in the atmosphere and ocean), by different research methods (field measurements, laboratory simulations, numerical modelling), and within a variety of application areas (dispersion of pollutants, weather forecasting, hazardous phenomena associated with buoyant forcing).
General Circulation Models (GCMs) are rapidly assuming widespread use as powerful tools for predicting global events on time scales of months to decades, such as the onset of EL Nino, monsoons, soil moisture saturation indices, global warming estimates, and even snowfall predictions. While GCMs have been praised for helping to foretell the current El Nino and its impact on droughts in Indonesia, its full power is only now being recognized by international scientists and governments who seek to link GCMs to help them estimate fish harvests, risk of floods, landslides, and even forest fires.Scientists in oceanography, hydrology, meteorology, and climatology and civil, ocean, and geological engineers perceive a need for a reference on GCM design. In this compilation of information by an internationally recognized group of experts, Professor Randall brings together the knowledge base of the forerunners in theoretical and applied frontiers of GCM development. General Circulation Model Development focuses on the past, present, and future design of numerical methods for general circulation modeling, as well as the physical parameterizations required for their proper implementation. Additional chapters on climate simulation and other applications provide illustrative examples of state-of-the-art GCM design.Key Features* Foreword by Norman Phillips* Authoritative overviews of current issues and ideas on global circulation modeling by leading experts* Retrospective and forward-looking chapters by Akio Arakawa of UCLA* Historical perspectives on the early years of general circulation modeling* Indispensable reference for researchers and graduate students
Mathematical modeling of atmospheric composition is a formidable scientific and computational challenge. This comprehensive presentation of the modeling methods used in atmospheric chemistry focuses on both theory and practice, from the fundamental principles behind models, through to their applications in interpreting observations. An encyclopaedic coverage of methods used in atmospheric modeling, including their advantages and disadvantages, makes this a one-stop resource with a large scope. Particular emphasis is given to the mathematical formulation of chemical, radiative, and aerosol processes; advection and turbulent transport; emission and deposition processes; as well as major chapters on model evaluation and inverse modeling. The modeling of atmospheric chemistry is an intrinsically interdisciplinary endeavour, bringing together meteorology, radiative transfer, physical chemistry and biogeochemistry, making the book of value to a broad readership. Introductory chapters and a review of the relevant mathematics make this book instantly accessible to graduate students and researchers in the atmospheric sciences.
The most comprehensive advanced graduate-level textbook on the subject This is a graduate-level textbook on the global circulation of the Earth's atmosphere—the large-scale system of winds by which energy is transported around the planet, from the tropical latitudes to the poles. Written by David Randall, one of the world’s foremost experts on the subject, it is the most comprehensive textbook on the topic. Intended for Earth science students who have completed some graduate-level coursework in atmospheric dynamics, the book will help students build on that foundation, preparing them for research in the field. The book describes the many phenomena of the circulation and explains them in terms of current ideas from fluid dynamics and thermodynamics, with frequent use of isentropic coordinates and using the methods of vector calculus. It emphasizes the key roles of water vapor and clouds, includes detailed coverage of energy flows and transformations, and pays close attention to scale interactions. The book also describes the major historical contributions of key scientists, giving a human dimension to the narrative, and it closes with a discussion of how the global circulation is evolving as the Earth’s climate changes. The most comprehensive graduate-level textbook on the subject Written by one of the world’s leading experts Connects global circulation and climate phenomena Addresses energy, moisture, and angular-momentum balance; the hydrologic cycle; and atmospheric turbulence and convection Emphasizes the energy cycle of the atmosphere; the role of moist processes; and circulation as an unpredictable, chaotic process Helps prepare students for research An online illustration package is available to professors