Download Free The Physical Chemistry Of Biopolymer Solutions Book in PDF and EPUB Free Download. You can read online The Physical Chemistry Of Biopolymer Solutions and write the review.

The book is concerned with the application of physical techniques to the study of the structure and interactions of biopolymers. The treatment is confined to those procedures applicable to solutions. The material has been tested on students in actual classes, thereby permitting the elimination of ambiguities and potential points of difficulty. Stress has been placed upon lucidity of treatment, and difficult steps in derivations have been explained. The mathematical exposition has been made as clear and simple as feasible. Examples of actual data are given.
The book is concerned with the application of physical techniques to the study of the structure and interactions of biopolymers. The treatment is confined to those procedures applicable to solutions. The material has been tested on students in actual classes, thereby permitting the elimination of ambiguities and potential points of difficulty. Stress has been placed upon lucidity of treatment, and difficult steps in derivations have been explained. The mathematical exposition has been made as clear and simple as feasible. Examples of actual data are given.
Biopolymers deals with the methods of physical characterization and the principles underlying them, with emphasis on quantitative aspects of sequence, conformation, and structure in both laboratory-synthesized and native biopolymers. The book reviews structural units of biopolymers and describes characterization of biopolymers, the available techniques, the evaluation of underlying principles, and experimental applications. Some of these methods include Raman spectroscopy, theoretical conformation analysis, electron microscopy, and morphology of laboratory-synthesized polymers. The text explains the factors controlling conformation of polypeptides, the steric maps of dipeptides, potential energy maps, and the calculation of tertiary polypeptide structure. The investigator can use X-ray diffraction to determine the structure of polymers and macromolecules, such as diffraction by a crystal, by poorly crystalline polymer systems, or by a helical chain. The book notes that materials that can be crystallized from strong solvents reveal morphology similar to that of commercial polymers, which are different from that of polypeptides or proteins in native tissue. The text explains the basis of infrared and Raman spectroscopy in probing molecular structure and conformation of biological macromolecules. The investigator can also employ nuclear magnetic resonance and dielectric relaxation for conformation in physical organic chemistry, outside of biological macromolecule applications. The book can prove helpful for researchers in ultra-trace analysis, polymer research, and analytical chemistry.
Integrating coverage of polymers and biological macromolecules into a single text, Physical Chemistry of Macromolecules is carefully structured to provide a clear and consistent resource for beginners and professionals alike. The basic knowledge of both biophysical and physical polymer chemistry is covered, along with important terms, basic structural properties and relationships. This book includes end of chapter problems and references, and also: Enables users to improve basic knowledge of biophysical chemistry and physical polymer chemistry. Explores fully the principles of macromolecular chemistry, methods for determining molecular weight and configuration of molecules, the structure of macromolecules, and their separations.
Polymer Solutions: An Introduction to Physical Properties offers a fresh, inclusive approach to teaching the fundamentals of physical polymer science. Students, instructors, and professionals in polymer chemistry, analytical chemistry, organic chemistry, engineering, materials, and textiles will find Iwao Teraoka’s text at once accessible and highly detailed in its treatment of the properties of polymers in the solution phase. Teraoka’s purpose in writing Polymer Solutions is twofold: to familiarize the advanced undergraduate and beginning graduate student with basic concepts, theories, models, and experimental techniques for polymer solutions; and to provide a reference for researchers working in the area of polymer solutions as well as those in charge of chromatographic characterization of polymers. The author’s incorporation of recent advances in the instrumentation of size-exclusion chromatography, the method by which polymers are analyzed, renders the text particularly topical. Subjects discussed include: Real, ideal, Gaussian, semirigid, and branched polymer chains Polymer solutions and thermodynamics Static light scattering of a polymer solution Dynamic light scattering and diffusion of polymers Dynamics of dilute and semidilute polymer solutions Study questions at the end of each chapter not only provide students with the opportunity to test their understanding, but also introduce topics relevant to polymer solutions not included in the main text. With over 250 geometrical model diagrams, Polymer Solutions is a necessary reference for students and for scientists pursuing a broader understanding of polymers.
Ever since Physical Chemistry was first published in 1913, it has remained a highly effective and relevant learning tool thanks to the efforts of physical chemists from all over the world. Each new edition has benefited from their suggestions and expert advice. The result of this remarkable tradition is now in your hands.
Physics.