Download Free The Ongoing Challenge Of Managing Carbon Monoxide Pollution In Fairbanks Alaska Book in PDF and EPUB Free Download. You can read online The Ongoing Challenge Of Managing Carbon Monoxide Pollution In Fairbanks Alaska and write the review.

Carbon monoxide (CO) is a toxic air pollutant produced largely from vehicle emissions. Breathing CO at high concentrations leads to reduced oxygen transport by hemoglobin, which has health effects that include impaired reaction timing, headaches, lightheadedness, nausea, vomiting, weakness, clouding of consciousness, coma, and, at high enough concentrations and long enough exposure, death. In recognition of those health effects, the U.S. Environmental Protection Agency (EPA), as directed by the Clean Air Act, established the health-based National Ambient Air Quality Standards (NAAQS) for CO in 1971. Most areas that were previously designated as "nonattainment" areas have come into compliance with the NAAQS for CO, but some locations still have difficulty in attaining the CO standards. Those locations tend to have topographical or meteorological characteristics that exacerbate pollution. In view of the challenges posed for some areas to attain compliance with the NAAQS for CO, congress asked the National Research Council to investigate the problem of CO in areas with meteorological and topographical problems. This interim report deals specifically with Fairbanks, Alaska. Fairbanks was chosen as a case study because its meteorological and topographical characteristics make it susceptible to severe winter inversions that trap CO and other pollutants at ground level.
Carbon monoxide (CO) is a toxic air pollutant produced largely from vehicle emissions. Breathing CO at high concentrations leads to reduced oxygen transport by hemoglobin, which has health effects that include impaired reaction timing, headaches, lightheadedness, nausea, vomiting, weakness, clouding of consciousness, coma, and, at high enough concentrations and long enough exposure, death. In recognition of those health effects, the U.S. Environmental Protection Agency (EPA), as directed by the Clean Air Act, established the health-based National Ambient Air Quality Standards (NAAQS) for CO in 1971. Most areas that were previously designated as "nonattainment" areas have come into compliance with the NAAQS for CO, but some locations still have difficulty in attaining the CO standards. Those locations tend to have topographical or meteorological characteristics that exacerbate pollution. In view of the challenges posed for some areas to attain compliance with the NAAQS for CO, congress asked the National Research Council to investigate the problem of CO in areas with meteorological and topographical problems. This interim report deals specifically with Fairbanks, Alaska. Fairbanks was chosen as a case study because its meteorological and topographical characteristics make it susceptible to severe winter inversions that trap CO and other pollutants at ground level.
The regulation of carbon monoxide has been one of the great success stories in air pollution control. While more than 90 percent of the locations with carbon monoxide monitors were in violation in 1971, today the number of monitors showing violations has fallen to only a few, on a small number of days and mainly in areas with unique meteorological and topographical conditions.
Managing the nation's air quality is a complex undertaking, involving tens of thousands of people in regulating thousands of pollution sources. The authors identify what has worked and what has not, and they offer wide-ranging recommendations for setting future priorities, making difficult choices, and increasing innovation. This new book explores how to better integrate scientific advances and new technologies into the air quality management system. The volume reviews the three-decade history of governmental efforts toward cleaner air, discussing how air quality standards are set and results measured, the design and implementation of control strategies, regulatory processes and procedures, special issues with mobile pollution sources, and more. The book looks at efforts to spur social and behavioral changes that affect air quality, the effectiveness of market-based instruments for air quality regulation, and many other aspects of the issue. Rich in technical detail, this book will be of interest to all those engaged in air quality management: scientists, engineers, industrial managers, law makers, regulators, health officials, clean-air advocates, and concerned citizens.
Ambient intelligence (AmI) is an element of pervasive computing that brings smartness to living and business environments to make them more sensitive, adaptive, autonomous and personalized to human needs. It refers to intelligent interfaces that recognise human presence and preferences, and adjust smart environments to suit their immediate needs and requirements. The key factor is the presence of intelligence and decision-making capabilities in IoT environments. The underlying technologies include pervasive computing, ubiquitous communication, seamless connectivity of smart devices, sensor networks, artificial intelligence (AI), machine learning (ML) and context-aware human-computer interaction (HCI). AmI applications and scenarios include smart homes, autonomous self-driving vehicles, healthcare systems, smart roads, the industry sector, smart facilities management, the education sector, emergency services, and many more. The advantages of AmI in the IoT environment are extensive. However, as for any new technological paradigm, there are also many open issues and limitations. This book discusses the AmI element of the IoT and the relevant principles, frameworks, and technologies in particular, as well as the benefits and inherent limitations. It reviews the state of the art of current developments relating to smart spaces and AmI-based IoT environments. Written by leading international researchers and practitioners, the majority of the contributions focus on device connectivity, pervasive computing and context modelling (including communication, security, interoperability, scalability, and adaptability). The book presents cutting-edge research, current trends, and case studies, as well as suggestions to further our understanding and the development and enhancement of the AmI-IoT vision.
Advances in Phytoremediation Technology offers in-depth information regarding the strategies and approaches facilitating the integration of technologies for wastewater treatment. The book highlights the role of hydrophytes, hyperaccumulators and native plants for accumulation and detoxification of industrial wastewater. Various chapters presented in the book are focused on the sustainability approaches as the centre theme to facilitate industries & policymakers in adopting circular economy goals. Since the principle idea of circular bioeconomy is to make transition from linear economy, it involves advanced technological and designing breakthroughs to reduce waste with a closed looped system. This pioneers a cradle to cradle and waste to resources approach. Integration of various technologies has been considered as possible best ways to utilize the industry wastewater treatment. Covers integration of technologies and processes for wastewater treatment Reports plants species useful in effectively accumulating heavy metals from the treated wastewater Describes Phytoremediation for mass biotechnological processing of the industrial areas Academicians, engineers, researchers and stakeholders will find this book helpful in adaptation of suitable technologies for wastewater management
Burning coal in electric utility plants produces, in addition to power, residues that contain constituents which may be harmful to the environment. The management of large volumes of coal combustion residues (CCRs) is a challenge for utilities, because they must either place the CCRs in landfills, surface impoundments, or mines, or find alternative uses for the material. This study focuses on the placement of CCRs in active and abandoned coal mines. The committee believes that placement of CCRs in mines as part of the reclamation process may be a viable option for the disposal of this material as long as the placement is properly planned and carried out in a manner that avoids significant adverse environmental and health impacts. This report discusses a variety of steps that are involved in planning and managing the use of CCRs as minefills, including an integrated process of CCR characterization and site characterization, management and engineering design of placement activities, and design and implementation of monitoring to reduce the risk of contamination moving from the mine site to the ambient environment. Enforceable federal standards are needed for the disposal of CCRs in minefills to ensure that states have adequate, explicit authority and that they implement minimum safeguards.
A practical guide for facility engineers and managers to understand the impact of environmental regulations when applied to operating equipment in any industry or facility. It lays out a clear road map on how to learn the essential steps and how to use the proper tools. Based on the author’s 39-year experience, this concise material discusses real-life applications and case studies adopted and implemented successfully in many NYC facilities and appropriate for large cities. It will help facility engineers comply with various rules and regulations of the jurisdictions of EPA, state, city, and local agencies and properly itemize reporting requirements. Features include: • Guides facility engineers and managers with a clear and logical exposition of topics, developments, and valuable regulatory frameworks for appropriate preparation and compliance • Provides detailed explanations of procedures for emission reduction and improved efficiency and productivity • Emphasizes the importance of continuing education in compliance to prevent high penalties for facilities • Includes real-life applications and case studies on reducing energy baseline and current operating methods, providing formulas and calculations • Addresses regulatory knowledge for operating systems in cities with a dense population in the US and countries with similar regulatory frameworks This book will benefit professionals, engineers, facility and project managers, building and grounds supervisors, code compliance managers, and heating, ventilation, air conditioning (HVAC) systems contractors and installers in hospitals, universities, schools, and other facilities.
Air Emissions from Animal Feeding Operations: Current Knowledge, Future Needs discusses the need for the U.S. Environmental Protection Agency to implement a new method for estimating the amount of ammonia, nitrous oxide, methane, and other pollutants emitted from livestock and poultry farms, and for determining how these emissions are dispersed in the atmosphere. The committee calls for the EPA and the U.S. Department of Agriculture to establish a joint council to coordinate and oversee short - and long-term research to estimate emissions from animal feeding operations accurately and to develop mitigation strategies. Their recommendation was for the joint council to focus its efforts first on those pollutants that pose the greatest risk to the environment and public health.