Download Free The Model Elementary Arithmetic Vol 2 Book in PDF and EPUB Free Download. You can read online The Model Elementary Arithmetic Vol 2 and write the review.

'The exposition is exceptionally clear, and keeps its audience in mind: in the end, this is ‘a book for adults on mathematics for children’. ‘Adults’ here includes parents as well as teachers; in the author’s words, ‘Every parent is automatically an educator!’ There is considerable merit in including parents in the elementary mathematics conversation; it is a pleasure to see books like Kupferman’s that explain elementary math to adults. If our students, in their future role as teachers, can enlist parents as allies, everyone will benefit. These books are one good way to begin addressing that challenge.'MAA ReviewsThis book covers the elementary school mathematics curriculum common in most parts of the world. Its aim is to serve educators (teachers and parents) as a guide for teaching mathematics at elementary school level. The book focuses both on content knowledge and on pedagogical content knowledge. It bridges the gap between fundamental mathematical principles and good teaching practices. It also offers the reader a glimpse on how mathematicians perceive elementary mathematics and presents ideas for specific mathematical activities.Volume 2 focuses on content taught in the higher grades of elementary school. It covers the following topics: multiplication and division of multi-digit numbers, divisibility and primality, divisibility signs, sequences, fractions and their representations, and fraction arithmetic.The author is also a co-founder of Matific, an adaptive game-based teaching and learning tool for primary school mathematics. Independent studies have shown Matific to improve test scores, reduce maths anxiety, and increase motivation. Matific is available in 26 languages and aligned to mathematics curricula in 46 countries. Awards include Best Mathematics Instructional Solution, Best Game-Based Curriculum Solution and Best Educational App. For a trial, visit https://www.matific.com.
These three volumes constitute the first complete English translation of Felix Klein’s seminal series “Elementarmathematik vom höheren Standpunkte aus”. “Complete” has a twofold meaning here: First, there now exists a translation of volume III into English, while until today the only translation had been into Chinese. Second, the English versions of volume I and II had omitted several, even extended parts of the original, while we now present a complete revised translation into modern English. The volumes, first published between 1902 and 1908, are lecture notes of courses that Klein offered to future mathematics teachers, realizing a new form of teacher training that remained valid and effective until today: Klein leads the students to gain a more comprehensive and methodological point of view on school mathematics. The volumes enable us to understand Klein’s far-reaching conception of elementarisation, of the “elementary from a higher standpoint”, in its implementation for school mathematics./div This volume II presents a paradigmatic realisation of Klein’s approach of elementarisation for teacher education. It is shown how the various geometries, elaborated particularly since the beginning of the 19th century, are revealed as becoming unified in a new restructured geometry. As Klein liked to stress: “Projective geometry is all geometry”. Non-Euclidean geometry proves to constitute a part of this unifying process. The teaching of geometry is discussed in a separate chapter, which provides moreover important information on the history of geometry teaching and an international comparison.
The advancement of a scientific discipline depends not only on the "big heroes" of a discipline, but also on a community’s ability to reflect on what has been done in the past and what should be done in the future. This volume combines perspectives on both. It celebrates the merits of Michael Otte as one of the most important founding fathers of mathematics education by bringing together all the new and fascinating perspectives created through his career as a bridge builder in the field of interdisciplinary research and cooperation. The perspectives elaborated here are for the greatest part motivated by the impressing variety of Otte’s thoughts; however, the idea is not to look back, but to find out where the research agenda might lead us in the future. This volume provides new sources of knowledge based on Michael Otte’s fundamental insight that understanding the problems of mathematics education – how to teach, how to learn, how to communicate, how to do, and how to represent mathematics – depends on means, mainly philosophical and semiotic, that have to be created first of all, and to be reflected from the perspectives of a multitude of diverse disciplines.
Studies in Logic and the Foundations of Mathematics, Volume 123: Constructivism in Mathematics: An Introduction, Vol. II focuses on various studies in mathematics and logic, including metric spaces, polynomial rings, and Heyting algebras. The publication first takes a look at the topology of metric spaces, algebra, and finite-type arithmetic and theories of operators. Discussions focus on intuitionistic finite-type arithmetic, theories of operators and classes, rings and modules, linear algebra, polynomial rings, fields and local rings, complete separable metric spaces, and located sets. The text then examines proof theory of intuitionistic logic, theory of types and constructive set theory, and choice sequences. The book elaborates on semantical completeness, sheaves, sites, and higher-order logic, and applications of sheaf models. Topics include a derived rule of local continuity, axiom of countable choice, forcing over sites, sheaf models for higher-order logic, and complete Heyting algebras. The publication is a valuable reference for mathematicians and researchers interested in mathematics and logic.