Download Free The Mesoscopic Theory Of Polymer Dynamics Book in PDF and EPUB Free Download. You can read online The Mesoscopic Theory Of Polymer Dynamics and write the review.

The theory presented in this book explains in a consistent manner all dynamics effects observed in very concentrated solutions and melts of linear polymers from a macromolecular point of view. The presentation is compact and self-contained.
Our brutal century of atom bombs and spaceships can also be called the century ofpolymers. In any case, the broad spreading ofsynthetic polymer materials is one of thesigns of our time. A look at the various aspects of our life is enough to convince us that polymeric materials (textiles, pl- tics, rubbers) are as widely spread and important in our life as are other materials (metals and non-metals) derived from small molecules. Polymers have entered the life of the twentieth century as irreplaceable construction materials. Polymers differ from other substances by the size of their molecules which, appropriately enough, are referred to as macromolecules, since they consist of thousands or tens of thousands of atoms (molecular weight up to -4 6 10 ormore) andhave a macroscopic rectilinear length (upto 10 cm). The atoms ofa macromolecule are firmly held together by valence bonds, fo- ing a single entity. In polymeric substances, the weaker van der Waals forces have an effect on the components of the macromolecules which form the system. The structure of polymeric systems is more complicated than that oflow-molecular solids or liquids, but there are some common features: the atoms within a given macromolecule are ordered, but the centres ofmass of the individual macromolecules and parts of them are distributed randomly. Remarkably, the mechanical response of polymeric systems combines the elasticity of a solid with the fluidity of a liquid.
From the reviews: "...This book is a very useful addition to polymer literature, and it is a pleasure to recommend it to the polymer community." (J.E. Mark, University of Cincinnati, POLYMER NEWS)
The application of neutron scattering to polymers has been extremely successful during the last two decades. This book presents, for the first time, both the theories and experimental examples which are needed to understand how these techniques can be applied. Now available in paperback forthe first time this book is specifically written to introduce the newcomer and non-expert to the experimental techniques and the basic theory necessary to understand the results.
"Provides a physical interpretation of the data obtained in macromolecular transport phenomena in a given system and also addresses some important issues and concepts related to biopolymers such as proteins and nucleic acids"--
This book offers a comprehensive introduction to polymer rheology with a focus on the viscoelastic characterization of polymeric materials. It contains various numerical algorithms for the processing of viscoelastic data, from basic principles to advanced examples which are hard to find in the existing literature. The book takes a multidisciplinary approach to the study of the viscoelasticity of polymers, and is self-contained, including the essential mathematics, continuum mechanics, polymer science and statistical mechanics needed to understand the theories of polymer viscoelasticity. It covers recent achievements in polymer rheology, such as theoretical and experimental aspects of large amplitude oscillatory shear (LAOS), and numerical methods for linear viscoelasticity, as well as new insights into the interpretation of experimental data. Although the book is balanced between the theoretical and experimental aspects of polymer rheology, the author’s particular interest in the theoretical side will not remain hidden. Aimed at readers familiar with the mathematics and physics of engineering at an undergraduate level, the multidisciplinary approach employed enables researchers with various scientific backgrounds to expand their knowledge of polymer rheology in a systematic way.
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This fourth volume collects authoritative chapters covering several applications of fractional calculus in physics, including classical and continuum mechanics.
Soft matter and biological systems pose many challenges for theoretical, experimental and computational research. From the computational point of view, these many-body sytems cover variations in relevant time and length scales over many orders of magnitude. Indeed, the macroscopic properties of materials and complex fluids are ultimately to be deduced from the dynamics of the microsopic, molecular level. In these lectures, internationally renowned experts offer a tutorial presentation of novel approaches for bridging these space and time scales in realistic simulations. This volume addresses graduate students and nonspecialist researchers from related areas seeking a high-level but accessible introduction to the state of the art in soft matter simulations.