Download Free The Mathematical Intelligencer Book in PDF and EPUB Free Download. You can read online The Mathematical Intelligencer and write the review.

Approximately fifty articles that were published in The Mathematical Intelligencer during its first eighteen years. The selection demonstrates the wide variety of attractive articles that have appeared over the years, ranging from general interest articles of a historical nature to lucid expositions of important current discoveries. Each article is introduced by the editors. "...The Mathematical Intelligencer publishes stylish, well-illustrated articles, rich in ideas and usually short on proofs. ...Many, but not all articles fall within the reach of the advanced undergraduate mathematics major. ... This book makes a nice addition to any undergraduate mathematics collection that does not already sport back issues of The Mathematical Intelligencer." D.V. Feldman, University of New Hamphire, CHOICE Reviews, June 2001.
A Dingo Ate My Math Book presents ingenious, unusual, and beautiful nuggets of mathematics with a distinctly Australian flavor. It focuses, for example, on Australians' love of sports and gambling, and on Melbourne's iconic, mathematically inspired architecture. Written in a playful and humorous style, the book offers mathematical entertainment as well as a glimpse of Australian culture for the mathematically curious of all ages. This collection of engaging stories was extracted from the Maths Masters column that ran from 2007 to 2014 in Australia's Age newspaper. The maths masters in question are Burkard Polster and Marty Ross, two (immigrant) Aussie mathematicians, who each week would write about math in the news, providing a new look at old favorites, mathematical history, quirks of school mathematics—whatever took their fancy. All articles were written for a very general audience, with the intention of being as inviting as possible and assuming a minimum of mathematical background.
Alan Turing is a patron saint of Manchester, remembered as the Mancunian who won the war, invented the computer, and was all but put to death for being gay. Each myth is related to a historical story. This is not a book about the first of those stories, of Turing at Bletchley Park. But it is about the second two, which each unfolded here in Manchester, of Turing's involvement in the world's first computer and of his refusal to be cowed about his sexuality. Manchester can be proud of Turing, but can we be proud of the city he encountered?
This monumental book traces the origins and development of mathematics in the ancient Middle East, from its earliest beginnings in the fourth millennium BCE to the end of indigenous intellectual culture in the second century BCE when cuneiform writing was gradually abandoned. Eleanor Robson offers a history like no other, examining ancient mathematics within its broader social, political, economic, and religious contexts, and showing that mathematics was not just an abstract discipline for elites but a key component in ordering society and understanding the world. The region of modern-day Iraq is uniquely rich in evidence for ancient mathematics because its prehistoric inhabitants wrote on clay tablets, many hundreds of thousands of which have been archaeologically excavated, deciphered, and translated. Drawing from these and a wealth of other textual and archaeological evidence, Robson gives an extraordinarily detailed picture of how mathematical ideas and practices were conceived, used, and taught during this period. She challenges the prevailing view that they were merely the simplistic precursors of classical Greek mathematics, and explains how the prevailing view came to be. Robson reveals the true sophistication and beauty of ancient Middle Eastern mathematics as it evolved over three thousand years, from the earliest beginnings of recorded accounting to complex mathematical astronomy. Every chapter provides detailed information on sources, and the book includes an appendix on all mathematical cuneiform tablets published before 2007.
This reference serves as a reader-friendly guide to every basic tool and skill required in the mathematical library and helps mathematicians find resources in any format in the mathematics literature. It lists a wide range of standard texts, journals, review articles, newsgroups, and Internet and database tools for every major subfield in mathematics and details methods of access to primary literature sources of new research, applications, results, and techniques. Using the Mathematics Literature is the most comprehensive and up-to-date resource on mathematics literature in both print and electronic formats, presenting time-saving strategies for retrieval of the latest information.
The second edition of this book updates and expands upon a historically important collection of mathematical problems first published in the United States by Birkhäuser in 1981. These problems serve as a record of the informal discussions held by a group of mathematicians at the Scottish Café in Lwów, Poland, between the two world wars. Many of them were leaders in the development of such areas as functional and real analysis, group theory, measure and set theory, probability, and topology. Finding solutions to the problems they proposed has been ongoing since World War II, with prizes offered in many cases to those who are successful. In the 35 years since the first edition published, several more problems have been fully or partially solved, but even today many still remain unsolved and several prizes remain unclaimed. In view of this, the editor has gathered new and updated commentaries on the original 193 problems. Some problems are solved for the first time in this edition. Included again in full are transcripts of lectures given by Stanislaw Ulam, Mark Kac, Antoni Zygmund, Paul Erdös, and Andrzej Granas that provide amazing insights into the mathematical environment of Lwów before World War II and the development of The Scottish Book. Also new in this edition are a brief history of the University of Wrocław’s New Scottish Book, created to revive the tradition of the original, and some selected problems from it. The Scottish Book offers a unique opportunity to communicate with the people and ideas of a time and place that had an enormous influence on the development of mathematics and try their hand on the unsolved problems. Anyone in the general mathematical community with an interest in the history of modern mathematics will find this to be an insightful and fascinating read.
Paul Lockhart reveals arithmetic not as the rote manipulation of numbers but as a set of ideas that exhibit the surprising behaviors usually reserved for higher branches of mathematics. In this entertaining survey, he explores the nature of counting and different number systems—Western and non-Western—and weighs the pluses and minuses of each.
This book explores the interaction between music and mathematics including harmony, symmetry, digital music and perception of sound.
The legendary Renaissance math duel that ushered in the modern age of algebra The Secret Formula tells the story of two Renaissance mathematicians whose jealousies, intrigues, and contentious debates led to the discovery of a formula for the solution of the cubic equation. Niccolò Tartaglia was a talented and ambitious teacher who possessed a secret formula—the key to unlocking a seemingly unsolvable, two-thousand-year-old mathematical problem. He wrote it down in the form of a poem to prevent other mathematicians from stealing it. Gerolamo Cardano was a physician, gifted scholar, and notorious gambler who would not hesitate to use flattery and even trickery to learn Tartaglia's secret. Set against the backdrop of sixteenth-century Italy, The Secret Formula provides new and compelling insights into the peculiarities of Renaissance mathematics while bringing a turbulent and culturally vibrant age to life. It was an era when mathematicians challenged each other in intellectual duels held outdoors before enthusiastic crowds. Success not only enhanced the winner's reputation, but could result in prize money and professional acclaim. After hearing of Tartaglia's spectacular victory in one such contest in Venice, Cardano invited him to Milan, determined to obtain his secret by whatever means necessary. Cardano's intrigues paid off. In 1545, he was the first to publish a general solution of the cubic equation. Tartaglia, eager to take his revenge by establishing his superiority as the most brilliant mathematician of the age, challenged Cardano to the ultimate mathematical duel. A lively account of genius, betrayal, and all-too-human failings, The Secret Formula reveals the epic rivalry behind one of the fundamental ideas of modern algebra.
Why are mathematicians drawn to art? How do they perceive it? What motivates them to pursue excellence in music or painting? Do they view their art as a conveyance for their mathematics or an escape from it? What are the similarities between mathematical talent and creativity and their artistic equivalents? What are the differences? Can a theatrical play or a visual image capture the beauty and excitement of mathematics? Some of the world's top mathematicians are also accomplished artists: musicians, photographers, painters, dancers, writers, filmmakers. In this volume, they share some of their work and reflect on the roles that mathematics and art have played in their lives. They write about creativity, communication, making connections, negotiating successes and failures, and navigating the vastly different professional worlds of art and mathematics.