Download Free The Logarithmic Potential And Other Monographs Book in PDF and EPUB Free Download. You can read online The Logarithmic Potential And Other Monographs and write the review.

The volume contains the following monographs: The Logarithmic Potential by Evans Fundamental Existence Theorems by Bliss Differential-Geometric Aspects of Dynamics by Kasner All three monographs were originally published by the AMS and are now available in this single volume from AMS Chelsea Publishing.
In recent years approximation theory and the theory of orthogonal polynomials have witnessed a dramatic increase in the number of solutions of difficult and previously untouchable problems. This is due to the interaction of approximation theoretical techniques with classical potential theory (more precisely, the theory of logarithmic potentials, which is directly related to polynomials and to problems in the plane or on the real line). Most of the applications are based on an exten sion of classical logarithmic potential theory to the case when there is a weight (external field) present. The list of recent developments is quite impressive and includes: creation of the theory of non-classical orthogonal polynomials with re spect to exponential weights; the theory of orthogonal polynomials with respect to general measures with compact support; the theory of incomplete polynomials and their widespread generalizations, and the theory of multipoint Pade approximation. The new approach has produced long sought solutions for many problems; most notably, the Freud problems on the asymptotics of orthogonal polynomials with a respect to weights of the form exp(-Ixl ); the "l/9-th" conjecture on rational approximation of exp(x); and the problem of the exact asymptotic constant in the rational approximation of Ixl. One aim of the present book is to provide a self-contained introduction to the aforementioned "weighted" potential theory as well as to its numerous applications. As a side-product we shall also fully develop the classical theory of logarithmic potentials.
This book resulted from two reports (published in 1928 and 1932) of the Committee on Rational Transformations, established by the National Research Council. The purpose of the reports was to give a comprehensive survey of the literature on the subject. Each chapter is regarded as a separate unit that can be read independently.
This book studies fundamental properties of the logarithmic potential and their connections to the theory of Fourier series, to potential theory, and to function theory. The material centers around a study of Poisson's integral in two dimensions and of the corresponding Stieltjes integral. The results are then extended to the integrals in terms of Green's functions for general regions. There are some thirty exercises scattered throughout the text. These are designed in part to familiarize the reader with the concepts introduced, and in part to complement the theory. The reader should know something of potential theory, functions of a complex variable, and Lebesgue integrals. The book is based on lectures given by the author in 1924-1925 at the Rice Institute and at the University of Chicago.
Presents the axiom systems of non-Euclidean geometry. This book states and proves theorem after theorem of (hyperbolic) non-Euclidean geometry.
Brownian Motion and Classical Potential Theory is a six-chapter text that discusses the connection between Brownian motion and classical potential theory. The first three chapters of this book highlight the developing properties of Brownian motion with results from potential theory. The subsequent chapters are devoted to the harmonic and superharmonic functions, as well as the Dirichlet problem. These topics are followed by a discussion on the transient potential theory of Green potentials, with an emphasis on the Newtonian potentials, as well as the recurrent potential theory of logarithmic potentials. The last chapters deal with the application of Brownian motion to obtain the main theorems of classical potential theory. This book will be of value to physicists, chemists, and biologists.