Download Free The Interstellar Probe Isp Book in PDF and EPUB Free Download. You can read online The Interstellar Probe Isp and write the review.

Between February and September 2001, a number of aspects of the solar-sail-launched Interstellar probe (ISP), which is under consideration by NASA for launch in the 2010-2015 timeframe, were researched. The effort was conducted in New York City (NYC) February-May, at Marshall Space Flight Center (MSFC) May-July (when the PI served as a NASA Summer 2001 Faculty Fellow), and in NYC August-September. In addition to the people listed on the title sheet, many people in NYC and at MSFC participated in this research.Matloff, G. L. and Vulpetti, G. and Bangs, C. and Haggerty, R. and Johnson, L. (Technical Monitor)Marshall Space Flight CenterSOLAR SAILS; PROPULSION; SPACE TRANSPORTATION; HOLOGRAPHY; LAUNCHING; PERIHELIONS; SUMMER; TRAJECTORIES
The reality of sunlight-based sailing in space began in May 2010, and solar sail technology and science have continued to evolve rapidly through new space missions. Using the power of the Sun's light for regular travel propulsion will be the next major leap forward in our journey to other worlds. This book is the second edition of the fascinating explanation of solar sails, how they work and how they will be used in the exploration of space. Updated with 35% new material, this second edition includes three new chapters on missions operated by Japan and the US, as well as projects that are in progress. The remainder of the book describes the heritage of exploration in water-borne sailing ships and the evolution to space-vehicle propulsion; as well as nuclear, solar-electric, nuclear-electric and antimatter rocket devices. It also discusses various sail systems that may use either sunlight or solar wind, and the design, fabrication and steering challenges associated with solar sails. The first edition was met with overwhelmingly positive reviews, and deemed “a title that needs to be on your shelf if you’re seriously interested in the next step as we move beyond rocketry" (Centauri Dreams, September 2008). Written with a mixed approach, this book appeals to both the general public as well as those with a more scientifically technical background.
The technology of the next few decades could possibly allow us to explore with robotic probes the closest stars outside our Solar System, and maybe even observe some of the recently discovered planets circling these stars. This book looks at the reasons for exploring our stellar neighbors and at the technologies we are developing to build space probes that can traverse the enormous distances between the stars. In order to reach the nearest stars, we must first develop a propulsion technology that would take our robotic probes there in a reasonable time. Such propulsion technology has radically different requirements from conventional chemical rockets, because of the enormous distances that must be crossed. Surprisingly, many propulsion schemes for interstellar travel have been suggested and await only practical engineering solutions and the political will to make them a reality. This is a result of the tremendous advances in astrophysics that have been made in recent decades and the perseverance and imagination of tenacious theoretical physicists. This book explores these different propulsion schemes – all based on current physics – and the challenges they present to physicists, engineers, and space exploration entrepreneurs. This book will be helpful to anyone who really wants to understand the principles behind and likely future course of interstellar travel and who wants to recognizes the distinctions between pure fantasy (such as Star Trek’s ‘warp drive’) and methods that are grounded in real physics and offer practical technological solutions for exploring the stars in the decades to come.
The majority of books dealing with prospects for interstellar flight tackle the problem of the propulsion systems that will be needed to send a craft on an interstellar trajectory. The proposed book looks at two other, equally important aspects of such space missions, and each forms half of this two part book. Part 1 looks at the ways in which it is possible to exploit the focusing effect of the Sun as a gravitational lens for scientific missions to distances of 550 AU and beyond into interstellar space. The author explains the mechanism of the Sun as a gravitational lens, the scientific investigations which may be carried out along the way to a distance of 550 AU (and at the 550 AU sphere itself), the requirements for exiting the Solar System at the highest speed and a range of project ideas for missions entering interstellar space. Part 2 of the book deals with the problems of communicating between an interstellar spaceship and the Earth, especially at very high speeds. Here the author assesses a range of mathematical tools relating to the Karhunen-Loève Transform (KLT) for optimal telecommunications, technical topics that may one day enable humans flying around the Galaxy to keep in contact with the Earth. This part of the book opens with a summary of the author’s 2003 Pešek Lecture presented at the IAC in Bremen, which introduces the concept of KLT for engineers and ‘newcomers’ to the subject. It is planned to include a DVD containing the full mathematical derivations of the KLT for those interested in this important mathematical tool whilst the text itself will contain the various results without outlines of the mathematical proofs. Astronautical engineers will thus be able to see the application of the results without getting bogged down in the mathematics.
EmDrive provides a comprehensive description of the theoretical background of this emerging technology. It includes the derivation of the essential equations, provides full thruster design details, and describes the manufacture and methods of testing that would enable the work to be correctly reproduced in the appropriate research facilities. Electromagnetic drive is a proposed method of propulsion that does not require a propellant, although it still requires fuel. It holds the potential to revolutionize renewable energy production, clean and quiet transport, and global climate control. Having evolved from numerous individual and organizational contributions, this book explains the origin and subsequent development of this theory from the original UK government requirement. The sequence of experimental devices is covered in detail, and the subsequent test results are discussed. Similar programmes in the USA and China are introduced, and the implications of recent disclosures are considered. This book will interest industry professionals working on electromagnetic theory and experimental physics in the fields of aerospace and energy engineering.
The range of solar sailing is very vast; it is a fully in-space means of propulsion that should allow us to accomplish various mission classes that are literally impossible using rocket propulsion, no matter if nuclear or electric. Fast and very fast solar sailings are special classes of sailcraft missions, initially developed only in the first half of the 1990s and still evolving, especially after the latest advances in nanotechnology. This book describes how to plan, compute and optimize the trajectories of sailcraft with speeds considerably higher than 100 km/s; such sailcraft would be able to explore the outer heliosphere, the near interstellar medium and the solar gravitational lens (550-800 astronomical units) in times significantly shorter than the span of an average career (~ 35 years), just to cite a few examples. The scientific interest in this type of exploration is huge.
In January 2004 NASA was given a new policy direction known as the Vision for Space Exploration. That plan, now renamed the United States Space Exploration Policy, called for sending human and robotic missions to the Moon, Mars, and beyond. In 2005 NASA outlined how to conduct the first steps in implementing this policy and began the development of a new human-carrying spacecraft known as Orion, the lunar lander known as Altair, and the launch vehicles Ares I and Ares V. Collectively, these are called the Constellation System. In November 2007 NASA asked the National Research Council (NRC) to evaluate the potential for new science opportunities enabled by the Constellation System of rockets and spacecraft. The NRC committee evaluated a total of 17 mission concepts for future space science missions. Of those, the committee determined that 12 would benefit from the Constellation System and five would not. This book presents the committee's findings and recommendations, including cost estimates, a review of the technical feasibility of each mission, and identification of the missions most deserving of future study.
The sun is the source of energy for life on earth and is the strongest modulator of the human physical environment. In fact, the Sun's influence extends throughout the solar system, both through photons, which provide heat, light, and ionization, and through the continuous outflow of a magnetized, supersonic ionized gas known as the solar wind. While the accomplishments of the past decade have answered important questions about the physics of the Sun, the interplanetary medium, and the space environments of Earth and other solar system bodies, they have also highlighted other questions, some of which are long-standing and fundamental. The Sun to the Earthâ€"and Beyond organizes these questions in terms of five challenges that are expected to be the focus of scientific investigations in solar and space physics during the coming decade and beyond.