Download Free The Interplay Of Eukaryotic Mrna Translation And Degradation Book in PDF and EPUB Free Download. You can read online The Interplay Of Eukaryotic Mrna Translation And Degradation and write the review.

The regulation of mRNA translation and degradation is essential for proper gene expression. In eukaryotes, a major mRNA degradation pathway is initiated by deadenylation, followed by decapping, and ultimately 5'-3' exonucleolytic digestion. Removal of the mRNA 5' cap is an irreversible step in mRNA degradation, and is postulated to require dissociation of the mRNA from the ribosomes and packaging into sub-cellular, ribosome-free granules termed P-bodies. Based on this and other observations, a "two-step" model of eukaryotic mRNA degradation had been proposed that mRNA translation and degradation occur in different compartments within the cell. Recent findings suggest, however, that mRNA degradation may occur independent of P-bodies. Consequently, an important but unresolved issue in the field is to determine the context in which mRNA is degraded. In my study, I have demonstrated that the three steps of mRNA decay, deadenylation, decapping, and 5'-3' exonucleolytic digestion, occur co-translationally. Specifically, mRNA deadenylation does not lead to ribosome dissociation. Second, I found that decapped mRNA mainly bound to polyribosomes, suggesting that decapping occurs during translation. In addition, using kinetic analysis, I demonstrated that mRNA decapping is initiated while the mRNA is on polyribosomes. Third, I observed that in wild-type cells, exonucleolytic decay fragments are polyribosome associated when ribosome transit is slowed in cis. Lastly, using an innovative assay I designed, I detected decapping products from endogenous mRNAs mainly on polyribosomes in wild type cells. These results clearly demonstrate that under normal physiological conditions, mRNA degradation occurs while the mRNA is still associated with ribosomes. In addition to the normal mRNA turnover pathway, I observed that mRNA decapping triggered by nonsense-mediated mRNA decay, an important mRNA quality control mechanism, also occurs on polyribosomes. Collectively, these results indicate that polyribosomes are the major sites for destroying both normal and aberrant mRNAs within eukaryotic cells
A Top 25 CHOICE 2016 Title, and recipient of the CHOICE Outstanding Academic Title (OAT) Award. How much energy is released in ATP hydrolysis? How many mRNAs are in a cell? How genetically similar are two random people? What is faster, transcription or translation?Cell Biology by the Numbers explores these questions and dozens of others provid
This is the first comprehensive review of mRNA stability and its implications for regulation of gene expression. Written by experts in the field, Control of Messenger RNA Stability serves both as a reference for specialists in regulation of mRNA stability and as a general introduction for a broader community of scientists. Provides perspectives from both prokaryotic and eukaryotic systems Offers a timely, comprehensive review of mRNA degradation, its regulation, and its significance in the control of gene expression Discusses the mechanisms, RNA structural determinants, and cellular factors that control mRNA degradation Evaluates experimental procedures for studying mRNA degradation
The first part of the book provides a pedagogical introduction to the physics of complex systems driven far from equilibrium. In this part we discuss the basic concepts and theoretical techniques which are commonly used to study classical stochastic transport in systems of interacting driven particles. The analytical techniques include mean-field theories, matrix product ansatz, renormalization group, etc. and the numerical methods are mostly based on computer simulations. In the second part of the book these concepts and techniques are applied not only to vehicular traffic but also to transport and traffic-like phenomena in living systems ranging from collective movements of social insects (for example, ants) on trails to intracellular molecular motor transport. These demonstrate the conceptual unity of the fundamental principles underlying the apparent diversity of the systems and the utility of the theoretical toolbox of non-equilibrium statistical mechanics in interdisciplinary research far beyond the traditional disciplinary boundaries of physics. Leading industry experts provide a broad overview of the interdisciplinary nature of physics Presents unified descriptions of intracellular, ant, and vehicular traffic from a physics point of view Applies theoretical methods in practical everyday situations Reference and guide for physicists, engineers and graduate students
The Encyclopedia of Cell Biology, Four Volume Set offers a broad overview of cell biology, offering reputable, foundational content for researchers and students across the biological and medical sciences. This important work includes 285 articles from domain experts covering every aspect of cell biology, with fully annotated figures, abundant illustrations, videos, and references for further reading. Each entry is built with a layered approach to the content, providing basic information for those new to the area and more detailed material for the more experienced researcher. With authored contributions by experts in the field, the Encyclopedia of Cell Biology provides a fully cross-referenced, one-stop resource for students, researchers, and teaching faculty across the biological and medical sciences. Fully annotated color images and videos for full comprehension of concepts, with layered content for readers from different levels of experience Includes information on cytokinesis, cell biology, cell mechanics, cytoskeleton dynamics, stem cells, prokaryotic cell biology, RNA biology, aging, cell growth, cell Injury, and more In-depth linking to Academic Press/Elsevier content and additional links to outside websites and resources for further reading A one-stop resource for students, researchers, and teaching faculty across the biological and medical sciences
RNAs form complexes with proteins and other RNAs. The RNA‐infrastructure represents the spatiotemporal interaction of these proteins and RNAs in a cell‐wide network. RNA Infrastructure and Networks brings together these ideas to illustrate the scope of RNA‐based biology, and how connecting RNA mechanisms is a powerful tool to investigate regulatory pathways. This book is but a taste of the wide range of RNA‐based mechanisms that connect in the RNA infrastructure.
The literature on recoding is scattered, so this superb book ?lls a need by prov- ing up-to-date, comprehensive, authoritative reviews of the many kinds of recoding phenomena. Between 1961 and 1966 my colleagues and I deciphered the genetic code in Escherichia coli and showed that the genetic code is the same in E. coli, Xenopus laevis, and guinea pig tissues. These results showed that the code has been c- served during evolution and strongly suggested that the code appeared very early during biological evolution, that all forms of life on earth descended from a c- mon ancestor, and thus that all forms of life on this planet are related to one another. The problem of biological time was solved by encoding information in DNA and retrieving the information for each new generation, for it is easier to make a new organism than it is to repair an aging, malfunctioning one. Subsequently, small modi?cations of the standard genetic code were found in certain organisms and in mitochondria. Mitochondrial DNA only encodes about 10–13 proteins, so some modi?cations of the genetic code are tolerated that pr- ably would be lethal if applied to the thousands of kinds of proteins encoded by genomic DNA.
This volume presents detailed laboratory protocols for in vitro synthesis of mRNA with favorable properties, its introduction into cells by a variety of techniques, and the measurement of physiological and clinical consequences such as protein replacement and cancer immunotherapy. Synthetic techniques are described for structural features in mRNA that provide investigational tools such as fluorescence emission, click chemistry, photo-chemical crosslinking, and that produce mRNA with increased stability in the cell, increased translational efficiency, and reduced activation of the innate immune response. Protocols are described for clinical applications such as large-scale transfection of dendritic cells, production of GMP-grade mRNA, redirecting T cell specificity, and use of molecular adjuvants for RNA vaccines. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Synthetic mRNA: Production, Introduction into Cells, and Physiological Consequences is a valuable and cutting-edge resource for both laboratory investigators and clinicians interested in this powerful and rapidly evolving technology.
The diversity of RNAs inside living cells is amazing. We have known of the more “classic” RNA species: mRNA, tRNA, rRNA, snRNA and snoRNA for some time now, but in a steady stream new types of molecules are being described as it is becoming clear that most of the genomic information of cells ends up in RNA. To deal with the enormous load of resulting RNA processing and degradation reactions, cells need adequate and efficient molecular machines. The RNA exosome is arising as a major facilitator to this effect. Structural and functional data gathered over the last decade have illustrated the biochemical importance of this multimeric complex and its many co-factors, revealing its enormous regulatory power. By gathering some of the most prominent researchers in the exosome field, it is the aim of this volume to introduce this fascinating protein complex as well as to give a timely and rich account of its many functions. The exosome was discovered more than a decade ago by Phil Mitchell and David Tollervey by its ability to trim the 3’end of yeast, S. cerevisiae, 5. 8S rRNA. In a historic account they laid out the events surrounding this identification and the subsequent birth of the research field. In the chapter by Kurt Januszyk and Christopher Lima the structural organization of eukaryotic exosomes and their evolutionary counterparts in bacteria and archaea are discussed in large part through presentation of structures.