Download Free The Handbook Of Microbial Metabolism Of Amino Acids Book in PDF and EPUB Free Download. You can read online The Handbook Of Microbial Metabolism Of Amino Acids and write the review.

Microbiome Metabolic Pathways and Disease provides insight into the interaction of microbial metabolic pathways in the human body and the impact these can have on a variety of diseases. By analyzing these pathways the book seeks to investigate how these metabolic processes can be targeted and manipulated in order to treat various disorders and diseases. Topics covered in the book include microbial shikimate pathways, protein biosynthesis, tryptophan metabolites, microbiome metabolic engineering, fecal microbiota transplantation, and virulence factors. Additionally, a variety of conditions are covered, such as disorders associated with metabolic syndromes, serotonin syndromes, Alzheimer's disease, and Covid-19, providing a detailed overview of how metabolic pathways of microbiome can impact health and disease in the human body. - Explores microbial metabolic pathways in the human body and implications for disease - Investigates specific steps involved in metabolic reactions in the human microbiome, including shikimate pathways and tryptophan pathways - Considers a variety of diseases and disorders, such as Alzheimer's disease, metabolic syndromes, Crohn's disease and Covid-19 - Includes analysis of various amino acids and enzymes in microbial and human cells and how these can impact health
This book collates and reviews recent advances in the microbial metabolism of amino acids, emphasizing diversity - in terms of the range of organisms under investigation and their natural ecology - and the unique features of amino acid metabolism in bacteria, yeasts, fungi, protozoa and nematodes. As well as studying the individual amino acids, including arginine, sulfur amino acids, branched-chain amino acids and aromatic amino acids, a number of themes are explored throughout the work. As the volume of research into the metabolism of amino acids grows, this comprehensive study of the subject is a vital tool for researchers in the fields of biological, medical and veterinary sciences, including microbiology, biochemistry, genetics and pathology. This book is also essential for corporate organizations with active research and development programmes, such as those in the pharmaceutical industry.
Economic Microbiology, Volume 2: Primary Products of Metabolism is part of a multi-volume series that aims to provide authoritative accounts of the many facets of exploitation and control of microbial activity. It discusses the production of industrially important chemicals by microbiological processes, specifically the production of primary products of metabolism. This volume includes accounts of the production of organic acids, nucleotides, and amino acids which form large and stable sectors of the microbiological industries. It also provides information on polysaccharide fermentations, which are currently undergoing extensive development. Further, there are discussions of the production of lipids and polyhydroxy alcohols, which have yet to be introduced on a commercial scale but could well become economically viable in the near future. Finally, there is also an account of the production of acetone and butanol by bacteria. This fermentation process featured significantly in the career of Chaim Weizmann, the first President of the State of Israel, and it is still operated in some countries.
This concise yet comprehensive text surveys the field of bacterial metabolism in terms useful to students and researchers. Emphasis is on those metabolic reactions occurring only in bacteria. Thus, the book describes in detail the energy metabolism of the various groups of bacteria. In addition, it examines pathways used by bacteria for the degradation of organic compounds, the synthesis of cellular constituents, the regulation of bacterial metabolism and the fixation of molecular nitrogen.
This book presents the current knowledge of fundamental as well as applied microbiology of amino acids. Coverage details the amino acid biosynthetic pathways, their genetic and biochemical regulation, transport of amino acids and genomics of producing microorganisms. The book also examines the metabolic engineering of microorganisms for the biotechnological production of amino acids for use as pharmaceuticals and as food and feed additives.
This book presents the latest findings on amino acid fermentation and reviews the 50-year history of their development. The book is divided into four parts, the first of which presents a review of amino acid fermentation, past and present. The second part highlights selected examples of amino acid fermentation in more detail, while the third focuses on recent advanced technologies. The last part introduces readers to several topics for future research directions in amino acid production systems. A new field, “amino acid fermentation”, was created by the progress of academic research and industrial development. In 1908, the Japanese researcher Kikunae Ikeda discovered glutamate as an Umami substance. Then a new seasoning, MSG (monosodium glutamate), was commercialized. Although glutamate was extracted from the hydro-lysate of wheat or soybean in the early days, a new production method was subsequently invented – “fermentation” – in which glutamate is produced from sugars such as glucose by a certain bacterium called Corynebacterium. The topic of this volume is particularly connected in a significant way with biochemical, biotechnological, and microbial fields. Both professionals in industry and an academic audience will understand the importance of this volume.
This book covers hot topics in the nutrition and metabolism of terrestrial and aquatic animals, including the interorgan transport and utilization of water, minerals, amino acids, glucose, and fructose; the development of alternatives to in-feed antibiotics for animals (e.g., swine and poultry); and metabolic disorders (or diseases) resulting from nutrient deficiencies. It enables readers to understand the crucial roles of nutrients in the nutrition, growth, development, and health of animals. Such knowledge has important implications for humans. Readers will also learn from well-written chapters about the use of new genome-editing biotechnologies to generate animals (e.g., cows and swine) as bioreactors that can produce large amounts of pharmaceutical proteins and other molecules to improve the health and well-being of humans and other animals, as well as the growth and productivity of farm animals. Furthermore, the book provides useful information on the use of animals (e.g., cattle, swine, sheep, chickens, and fish) as models in biomedical research to prevent and treat human diseases, develop infant formulas, and improve the cardiovascular and metabolic health of offspring with prenatal growth restriction. Editor of this book is an internationally recognized expert in nutrition and metabolisms. He has about 40 years of experience with research and teaching at world-class universities in the subject matters. He has published more than 660 papers in peer-reviewed journals, 90 chapters in books, and authored two text/reference books, with a very high H-index of 127 and more than 66,000 citations in Google Scholar. This publication is a useful reference for nutrition and biomedical professionals, as well as undergraduate and graduate students in animal science, aquaculture, zoology, wildlife, veterinary medicine, biology, biochemistry, food science, nutrition, pharmacology, physiology, toxicology, and other related disciplines. In addition, all chapters provide general and specific references to nutrition and metabolism for researchers and practitioners in animal agriculture (including aquaculture), dietitians, animal and human medicines, and for government policy makers.
This revealing book details recent developments in the study of the relationship between sulfur and the microbial agents that affect its metabolism. In recent years, new methods have been applied to study the biochemistry and molecular biology of reactions of the global sulfur cycle, the microorganisms involved and their physiology, metabolism and ecology. These activities have uncovered fascinating new insights for the understanding of aerobic and anaerobic sulfur metabolism.
Bacterial Metabolism focuses on metabolic events that occur in microorganisms, as well as photosynthesis, oxidation, polysaccharide formation, and homofermentation. The book first discusses the thermodynamics of biological reactions, photosynthesis and photometabolism, and chemosynthesis. Free energy, photosynthesis, enzymes, and terminology in bacterial metabolism are elaborated. The manuscript then examines acetic acid bacteria and lactic acid bacteria. Discussions focus on lactate, ethanol, glucose, and glycerol metabolism, glycol oxidation, homofermentation, polysaccharide formation, and electron transport systems. The publication takes a look at pseudomonadaceae and nitrogen metabolism as an energy source for anaerobic microorganisms. Topics include metabolism of pairs of amino acids, single amino acid metabolism, oxidation of glycolate and malonate, and oxygenases. The book is a dependable source of information for readers interested in bacterial metabolism.
The Fourth Edition of Microbial Physiology retains the logical, easy-to-follow organization of the previous editions. An introduction to cell structure and synthesis of cell components is provided, followed by detailed discussions of genetics, metabolism, growth, and regulation for anyone wishing to understand the mechanisms underlying cell survival and growth. This comprehensive reference approaches the subject from a modern molecular genetic perspective, incorporating new insights gained from various genome projects.