Download Free The Growing Threat To Air Force Mission Critical Electronics Book in PDF and EPUB Free Download. You can read online The Growing Threat To Air Force Mission Critical Electronics and write the review.

High-performance electronics are key to the U.S. Air Force's (USAF's) ability to deliver lethal effects at the time and location of their choosing. Additionally, these electronic systems must be able to withstand not only the rigors of the battlefield but be able to perform the needed mission while under cyber and electronic warfare (EW) attack. This requires a high degree of assurance that they are both physically reliable and resistant to adversary actions throughout their life cycle from design to sustainment. In 2016, the National Academies of Sciences, Engineering, and Medicine convened a workshop titled Optimizing the Air Force Acquisition Strategy of Secure and Reliable Electronic Components, and released a summary of the workshop. This publication serves as a follow-on to provide recommendations to the USAF acquisition community.
Modern software engineering practices, pioneered by the commercial software community, have begun transforming Department of Defense (DoD) software development, integration processes, and deployment cycles. DoD must further adopt and adapt these practices across the full defense software life cycle - and this adoption has implications for software maintenance and software sustainment across the U.S. defense community. Air Force Software Sustainment and Maintenance of Weapons Systems evaluates the current state of software sustainment within the U.S. Air Force and recommends changes to the software sustainment enterprise. This report assesses how software that is embedded within weapon platforms is currently sustained within the U.S. Air Force; identifies the unique requirements of software sustainment; develops and recommends a software sustainment work breakdown structure; and identifies the necessary personnel skill sets and core competencies for software sustainment.
Dr. Greg Zacharias, former Chief Scientist of the United States Air Force (2015-18), explores next steps in autonomous systems (AS) development, fielding, and training. Rapid advances in AS development and artificial intelligence (AI) research will change how we think about machines, whether they are individual vehicle platforms or networked enterprises. The payoff will be considerable, affording the US military significant protection for aviators, greater effectiveness in employment, and unlimited opportunities for novel and disruptive concepts of operations. Autonomous Horizons: The Way Forward identifies issues and makes recommendations for the Air Force to take full advantage of this transformational technology.
Except in a few instances, since World War II no American soldier or sailor has been attacked by enemy air power. Conversely, no enemy soldier orsailor has acted in combat without being attacked or at least threatened by American air power. Aviators have brought the air weapon to bear against enemies while denying them the same prerogative. This is the legacy of the U.S. AirForce, purchased at great cost in both human and material resources.More often than not, aerial pioneers had to fight technological ignorance, bureaucratic opposition, public apathy, and disagreement over purpose.Every step in the evolution of air power led into new and untrodden territory, driven by humanitarian impulses; by the search for higher, faster, and farther flight; or by the conviction that the air way was the best way. Warriors have always coveted the high ground. If technology permitted them to reach it, men, women andan air force held and exploited it-from Thomas Selfridge, first among so many who gave that "last full measure of devotion"; to Women's Airforce Service Pilot Ann Baumgartner, who broke social barriers to become the first Americanwoman to pilot a jet; to Benjamin Davis, who broke racial barriers to become the first African American to command a flying group; to Chuck Yeager, a one-time non-commissioned flight officer who was the first to exceed the speed of sound; to John Levitow, who earned the Medal of Honor by throwing himself over a live flare to save his gunship crew; to John Warden, who began a revolution in air power thought and strategy that was put to spectacular use in the Gulf War.Industrialization has brought total war and air power has brought the means to overfly an enemy's defenses and attack its sources of power directly. Americans have perceived air power from the start as a more efficient means of waging war and as a symbol of the nation's commitment to technology to master challenges, minimize casualties, and defeat adversaries.
In August 2018 Air University brought together a diverse group of leading subject matter experts to address current challenges in the electromagnetic spectrum. This report summarizes insights, conclusions, and recommendations developed during the inaugural Electromagnetic Defense Task Force.
A key technical issue for future Air Force systems is to improve their ability to survive. Increased use of stealth technology is proposed by many to be the major element in efforts to enhance survivability for future systems. Others, however, suggest that the high cost and maintenance required of stealth technology make increased speed potentially more productive. To help address this issue, the Air Force asked the NRC to investigate combinations of speed and stealth that would provide U.S. aircraft with a high survival capability in the 2018 period, and to identify changes in R&D plans to enable such aircraft. This report presents a review of stealth technology development; a discussion of possible future missions and threats; an analysis of the technical feasibility for achieving various levels of stealth and different speeds by 2018 and of relevant near-term R&D needs and priorities; and observations about the utility of speed and stealth trade-offs against evolving threats.