Download Free The Golgi Apparatus And The Plant Secretory Pathway Book in PDF and EPUB Free Download. You can read online The Golgi Apparatus And The Plant Secretory Pathway and write the review.

This volume presents relevant background information to understanding the molecular basis governing unconventional protein secretion (UPS), and in particular explores the latest techniques and protocols that have been successfully applied for the study of this topic. Detailed chapters include an overview of conventional and unconventional secretory pathways along with multidisciplinary approaches and methods used for UPS analysis in different organisms. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Unconventional Protein Secretion: Methods and Protocols will be useful for all interested in the secretory pathway field as well as applications in cell biology, cell development, biomedical research, and healthcare.
In 1898 Camillo Golgi reported his newly observed intracellular structure, the apparato reticolare interno, now universally known as the Golgi Apparatus. The method he used was an ingenious histological technique (La reazione nera) which brought him fame for the discovery of neuronal networks and culminated in the award of the Nobel Prize for Physiology and Medicine in 1906. This technique, however, was not easily reproducible and led to a long-lasting controversy about the reality of the Golgi apparatus. Its identification as a ubiquitous organelle by electron microscopy turned out to be the breakthrough and incited an enormous wave of interest in this organelle at the end of the sixties. In recent years immunochemical techniques and molecular cloning approaches opened up new avenues and led to an ongoing resurgence of interest. The role of the Golgi apparatus in modifying, broadening and refining the structural information conferred by transcription/translation is now generally accepted but still incompletely understood. During the coming years, this topic certainly will remain center stage in the field of cell biology. The centennial of the discovery of this fascinating organelle prompted us to edit a new comprehensive book on the Golgi apparatus whose complexity necessitated the contributions of leading specialists in this field. This book is aimed at a broad readership of glycobiologists as well as cell and molecular biologists and may also be interesting for advanced students of biology and life sciences.
The Golgi apparatus is a key component of plant and animal cells. Its primary role is to orchestrate the targeting of proteins and lipids to specific cellular destinations. With advances in our understanding of how the Golgi apparatus operates in plants, it will become possible to manipulate both the timing and the site of delivery of macromolecules, thus influencing plant growth and development. This volume concentrates on the major developments of the last few years, drawing attention to the distinct differences between the plant and non-plant Golgi apparatus and highlighting unsolved problems. A chapter is included on the yeast Golgi apparatus.
This volume presents a range of different techniques that have been used to characterize the structure and function of the endoplasmic reticulum (ER) in higher plants. Chapters guide readers through application of modern microscopy techniques by fluorescence and electron microscopy, new protocols for analysing ER network structure, methods to purify and analyse ER membrane structure and to study protein glycosylation, protocols to study the unfolded protein response, and the role of the ER in autophagy. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, The Plant Endoplasmic Reticulum: Methods and Protocols aims to ensure successful results in the further study of this vital field.
The highly structured eucaryotic cell with its complex division of biochemical labour requires a distinct protein complement in each cellular structure and compartment. Nuclear coded and cytosolically synthesized polypeptides are specifically sorted to every corner of the cell in a post- or co-translational manner. The presence of separate genomes and protein translation machineries in plastids and mitochondria requires further coordination not only on the transcriptional, translational but also most likely on the protein import level. Numerous different protein transport systems have developed and coexist within plant cells to ensure the specific and selective composition of every sub-cellular compartment. This volume summarizes the current knowledge on protein trafficking in plant cells. Aside from the fundamental aspects in cell biology of how specific pre-protein sorting and translocation across biological membranes is achieved, a major focus is on transport, modification and deposition of plant storage proteins. The increasing use of plants as bioreactors to provide custom-designed proteins of different usage requires detailed understanding of these events. This text is directed not only at students and professionals in plant cell and molecular biology but also at those involved in horticulture and plant breeding. It is intended to serve as a text and guide for graduate-level courses on plant cell biology and as a valuable supplement to courses in plant physiology and development. Scientists in other disciplines who wish to learn more about protein translocation in plants will also find this text an up-to-date source of information and reference.
Sugar chains (glycans) are often attached to proteins and lipids and have multiple roles in the organization and function of all organisms. "Essentials of Glycobiology" describes their biogenesis and function and offers a useful gateway to the understanding of glycans.
This book summarizes all new data obtained after development of methods of Golgi complex sub fractionation, molecular biology and microscopy. It collects the full range of expertise, different points of view and different approaches. The book is devoted to molecular modes of the function of the Golgi apparatus as a whole, taking into account all experimental data. The book aims to make the functional organization of the Golgi apparatus more understandable.
Plant cell biologists seek to characterize the principles underlying complex phenomena such as growth and differentiation and to define the ways in which plant cells respond to external and internal stimuli. This book discusses established techniques and presents some exciting advances that will have a major impact on the field in the future. The book begins with a detailed discussion of methods and protocols for viewing, staining, and localizing cell components. Subsequent chapters cover topics such as localizing specific nucleic acid sequences and proteins, protoplast research, wall analysis, plant cytoskeleton research, isolation and use of intact chloroplasts and thylakoids, and the measurement of ions and solutes within plant cells. Plant Cell Biology: A Practical Approach provides both newcomers and experienced researchers with a comprehensive practical guide to the subject.
This revision of the now classic Plant Anatomy offers a completely updated review of the structure, function, and development of meristems, cells, and tissues of the plant body. The text follows a logical structure-based organization. Beginning with a general overview, chapters then cover the protoplast, cell wall, and meristems, through to phloem, periderm, and secretory structures. "There are few more iconic texts in botany than Esau’s Plant Anatomy... this 3rd edition is a very worthy successor to previous editions..." ANNALS OF BOTANY, June 2007