Download Free The Function Of The Olivo Cerebellar System Book in PDF and EPUB Free Download. You can read online The Function Of The Olivo Cerebellar System and write the review.

During the last decades, investigations on the olivo-cerebellar system have attained a high level of sophistication, which led to redefinitions of several structural and functional properties of neurons, synapses, connections and circuits. Research has expanded and deepened in so many directions and so many theories and models have been proposed that an ensemble review of the matter is now needed. Yet, hot topics remain open and scientific discussion is very lively at several fronts. One major question, here as well as in other major brain circuits, is how single neurons and synaptic properties emerge at the network level and contribute to behavioural regulation via neuronal plasticity. Other major aspects that this Research Topic covers and discusses include the development and circuit organization of the olivo-cerebellar network, the established and recent theories of learning and motor control, and the emerging role of the cerebellum in cognitive processing. By touching on such varied and encompassing subjects, this Frontiers Special Topic aims to highlight the state of the art and stimulate future research. We hope that this unique collection of high-quality articles from experts in the field will provide scientists with a powerful basis of knowledge and inspiration to enucleate the major issues deserving further attention.
During the last decades, investigations on the olivo-cerebellar system have attained a high level of sophistication, which led to redefinitions of several structural and functional properties of neurons, synapses, connections and circuits. Research has expanded and deepened in so many directions and so many theories and models have been proposed that an ensemble review of the matter is now needed. Yet, hot topics remain open and scientific discussion is very lively at several fronts. One major question, here as well as in other major brain circuits, is how single neurons and synaptic properties emerge at the network level and contribute to behavioural regulation via neuronal plasticity. Other major aspects that this Research Topic covers and discusses include the development and circuit organization of the olivo-cerebellar network, the established and recent theories of learning and motor control, and the emerging role of the cerebellum in cognitive processing. By touching on such varied and encompassing subjects, this Frontiers Special Topic aims to highlight the state of the art and stimulate future research. We hope that this unique collection of high-quality articles from experts in the field will provide scientists with a powerful basis of knowledge and inspiration to enucleate the major issues deserving further attention.
This volume offers up-to-date reviews on different aspects of the olivocerebellar system. The latest research results are presented on morphological organization, development of afferent and efferent connections, neurotransmitters, and general electrophysiology. The possible part played in the dynamic control of movements and in motor learning and memory is discussed with theoretical models and some clinical problems. The reader has access in one volume to all studies currently being conducted and to the sometimes controversial views on the role of the inferior olive in cerebellar function and motor control.
The Mouse Nervous System provides a comprehensive account of the central nervous system of the mouse. The book is aimed at molecular biologists who need a book that introduces them to the anatomy of the mouse brain and spinal cord, but also takes them into the relevant details of development and organization of the area they have chosen to study. The Mouse Nervous System offers a wealth of new information for experienced anatomists who work on mice. The book serves as a valuable resource for researchers and graduate students in neuroscience. Systematic consideration of the anatomy and connections of all regions of the brain and spinal cord by the authors of the most cited rodent brain atlases A major section (12 chapters) on functional systems related to motor control, sensation, and behavioral and emotional states A detailed analysis of gene expression during development of the forebrain by Luis Puelles, the leading researcher in this area Full coverage of the role of gene expression during development and the new field of genetic neuroanatomy using site-specific recombinases Examples of the use of mouse models in the study of neurological illness
Our knowledge of cerebellar functions and cerebellar disorders, called ataxias, is increasing considerably. Studies of the cerebellum are now a central focus in neuroscience. During the last four decades, many laboratories worldwide have dedicated their research activities to understanding the roles of the cerebellum in motor control, cognitive processes and biology of mental processes, behavioral symptoms, and emotion. It is now accepted that the cerebellum acts as a cognitive operator in learning, perception, and attention. Moreover, major improvements in our assessment of in vivo cerebellar architecture using imaging techniques have occurred. A typical example is the accurate description of cerebellar anatomy during fetal development with MRI, a progress which has direct impacts on patient care. These advances have been associated with discoveries of new clinical disorders, in particular in the field of genetic ataxias. More than 20 new genes have been identified these last 10 years. Only for dominant ataxias, more than 30 diseases have now been unravelled. The number of ataxic disorders will increase with aging, the cerebellum being the structure of the brain with the most important loss of neurons with age. More than 300 different cerebellar disorders are encountered during daily practice, but we are missing a single source of information explaining their pathogenesis. Despite the immense amount of knowledge acquired about the cerebellar circuitry these last years, a large book covering the neuroscience of the cerebellum is missing. The goal of this endeavour is to bring up to date information relevant for basic science and also for clinical activities. To reach this goal, the most renowned authors are gathered in a unique and in-depth book with a format of a handbook. We emphasize the connections between molecular findings, imaging features, behavioural/neuropsychological aspects, and clinical implications.
Essentials of the Cerebellum and Cerebellar Disorders is the first book of its kind written specifically for graduate students and clinicians. It is based on the 4-volume treatise, Handbook of the Cerebellum and Cerebellar Disorders (Springer, 2013), the definitive reference for scientists and neurologists in the field of cerebellar neurobiology. There have been fundamental advances in the basic science and clinical neurology of the cerebellum and its role in sensorimotor function and cognition. This monograph makes this large and expanding body of knowledge readily accessible to trainees and clinicians alike. The editors are world leaders in the field, and the chapters are authored by an international panel of experts drawn from ataxia clinics and cerebellar laboratories throughout North America, Europe and Asia. Essentials provides a solid grounding in the field of cerebellar research and ataxiology from cerebellar circuity to clinical practice, and it serves as a springboard to a deeper appreciation of both the principles and the complexities of cerebellar neurobiology. Clinicians are expected to have a deep appreciation of cerebellar disorders, not only in specialized ataxia clinics but also in adult and pediatric neurology, neurosurgery, psychiatry and neuropsychology practices, and in outpatient and inpatient rehabilitation settings. This book is an indispensable resource for students and practitioners navigating the evolving field of cerebellar motor and cognitive neurology. It also links to the more expansive Handbook for those who need to explore the topics in this monograph in greater depth.
The Cerebellum and Cognition pulls together a preeminent group of authors. The cerebellum has been previously considered as a highly complex structure involved only with motor control. The cerebellum is essential to nonmotor functions, and recent research has revealed new medically important roles of the cerebellum and cognitive processes. Selected for inclusion in Doody's Core Titles 2013, an essential collection development tool for health sciences libraries Comprehensive coverage of cerebellum in motor control and cognition New developments regarding the cerebellum and motor systems Therapeutic implications of cerebellar contributions to cognition Preeminent group of contributors
Conn’s Translational Neuroscience provides a comprehensive overview reflecting the depth and breadth of the field of translational neuroscience, with input from a distinguished panel of basic and clinical investigators. Progress has continued in understanding the brain at the molecular, anatomic, and physiological levels in the years following the 'Decade of the Brain,' with the results providing insight into the underlying basis of many neurological disease processes. This book alternates scientific and clinical chapters that explain the basic science underlying neurological processes and then relates that science to the understanding of neurological disorders and their treatment. Chapters cover disorders of the spinal cord, neuronal migration, the autonomic nervous system, the limbic system, ocular motility, and the basal ganglia, as well as demyelinating disorders, stroke, dementia and abnormalities of cognition, congenital chromosomal and genetic abnormalities, Parkinson's disease, nerve trauma, peripheral neuropathy, aphasias, sleep disorders, and myasthenia gravis. In addition to concise summaries of the most recent biochemical, physiological, anatomical, and behavioral advances, the chapters summarize current findings on neuronal gene expression and protein synthesis at the molecular level. Authoritative and comprehensive, Conn’s Translational Neuroscience provides a fully up-to-date and readily accessible guide to brain functions at the cellular and molecular level, as well as a clear demonstration of their emerging diagnostic and therapeutic importance. Provides a fully up-to-date and readily accessible guide to brain functions at the cellular and molecular level, while also clearly demonstrating their emerging diagnostic and therapeutic importance Features contributions from leading global basic and clinical investigators in the field Provides a great resource for researchers and practitioners interested in the basic science underlying neurological processes Relates and translates the current science to the understanding of neurological disorders and their treatment
Progress in Brain Research is the most acclaimed and accomplished series in neuroscience, firmly established as an extensive documentation of the advances in contemporary brain research. The volumes, some of which are derived from important international symposia, contain authoritative reviews and original articles by invited specialists. The rigorous editing of the volumes assures that they will appeal to all laboratory and clinical brain research workers in the various disciplines: neuroanatomy, neurophysiology, neuropharmacology, neuroendocrinology, neuropathology, basic neurology, biological psychiatry, and the behavioral sciences. This volume, The Cerebellum and Memory Formation: Structure, Computation and Function, covers topics including feedback control of cerebellar learning; cortico-cerebellar organization and skill acquisition; cerebellar plasticity and learning in the oculomotor system, and more. Leading authors review the state-of-the-art in their field of investigation, and provide their views and perspectives for future research The volume reflects current thinking about the ways in which the cerebellum can engage in learning, and the contributors come from a variety of research fields The chapters express perspectives from different levels of analysis that range from molecular and cellular mechanisms through to long-range systems that allow the cerebellum to communicate with other brain areas