Download Free The Function Concept In Secondary School Mathematics Book in PDF and EPUB Free Download. You can read online The Function Concept In Secondary School Mathematics and write the review.

How do you get a fourth-grader excited about history? How do you even begin to persuade high school students that mathematical functions are relevant to their everyday lives? In this volume, practical questions that confront every classroom teacher are addressed using the latest exciting research on cognition, teaching, and learning. How Students Learn: History, Mathematics, and Science in the Classroom builds on the discoveries detailed in the bestselling How People Learn. Now, these findings are presented in a way that teachers can use immediately, to revitalize their work in the classroom for even greater effectiveness. Organized for utility, the book explores how the principles of learning can be applied in teaching history, science, and math topics at three levels: elementary, middle, and high school. Leading educators explain in detail how they developed successful curricula and teaching approaches, presenting strategies that serve as models for curriculum development and classroom instruction. Their recounting of personal teaching experiences lends strength and warmth to this volume. The book explores the importance of balancing students' knowledge of historical fact against their understanding of concepts, such as change and cause, and their skills in assessing historical accounts. It discusses how to build straightforward science experiments into true understanding of scientific principles. And it shows how to overcome the difficulties in teaching math to generate real insight and reasoning in math students. It also features illustrated suggestions for classroom activities. How Students Learn offers a highly useful blend of principle and practice. It will be important not only to teachers, administrators, curriculum designers, and teacher educators, but also to parents and the larger community concerned about children's education.
When discussing the mathematical knowledge of elementary school teachers, the National Council of Teachers of Mathematics concludes that teachers must have a deep understanding of mathematics and be able to easily draw on that knowledge with flexibility in their teaching tasks. Mathematics teachers must understand the big ideas of mathematics and be able to represent mathematics as a coherent and connected endeavor. This inquiry and exploration-based workbook has been designed as a tool for pre-service and in-service mathematics teachers to use as a guidebook for "doing mathematics" and exploring mathematics topics in depth. The lessons chosen for this text serve as a function-based approach that connects important topics in the secondary mathematics curriculum and act as a bridge to university-level mathematics. Whether used as a course text or for individual professional development purposes, this book should be approached from the standpoint of discovery and reflection about the significance of the selected topics. It is the authors' hope that the explorations contained within serve as vehicles for classroom discussion and presentation of mathematics topics, or as starting points for further investigation. Efraim P. Armendariz is a professor of mathematics at the University of Texas at Austin. His mathematical interests include noncommutative ring theory, development of educational programs addressing accessibility issues, and development of secondary mathematics teachers. He received a Ph.D. in Mathematics from the University of Nebraska-Lincoln in 1966. Mark L. Daniels is a clinical associate professor of mathematics and UTeach Natural Sciences at the University of Texas at Austin. His research interests involve the preparation of pre-service teachers and the incorporation of instructional methodology in mathematics courses taken by students seeking certification.
This open access book provides an overview of Felix Klein's ideas, highlighting developments in university teaching and school mathematics related to Klein's thoughts, stemming from the last century. It discusses the meaning, importance and the legacy of Klein's ideas today and in the future, within an international, global context. Presenting extended versions of the talks at the Thematic Afternoon at ICME-13, the book shows that many of Klein's ideas can be reinterpreted in the context of the current situation, and offers tips and advice for dealing with current problems in teacher education and teaching mathematics in secondary schools. It proves that old ideas are timeless, but that it takes competent, committed and assertive individuals to bring these ideas to life. Throughout his professional life, Felix Klein emphasised the importance of reflecting upon mathematics teaching and learning from both a mathematical and a psychological or educational point of view. He also strongly promoted the modernisation of mathematics in the classroom, and developed ideas on university lectures for student teachers, which he later consolidated at the beginning of the last century in the three books on elementary mathematics from a higher standpoint. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.
Are sequences functions? Why can’t the popular “vertical line test” be applied in some cases to determine if a relation is a function? How does the idea of rate of change connect with simpler ideas about proportionality as well as more advanced topics in calculus? How much do you know… and how much do you need to know? Helping your high school students develop a robust understanding of functions requires that you understand mathematics deeply. But what does that mean? This book focuses on essential knowledge for teachers about functions. It is organised around five big ideas, supported by multiple smaller, interconnected ideas-essential understandings. Taking you beyond a simple introduction to functions, this book will broaden and deepen your mathematical understanding of one of the most challenging topics for students and teachers. It will help you engage your students, anticipate their perplexities, avoid pitfalls and dispel misconceptions. You will also learn to develop appropriate tasks, techniques and tools for assessing students’ understanding of the topic. Focus on the ideas that you need to understand thoroughly to teach confidently.
Develop a deep understanding of mathematics by grasping the context and purpose behind various strategies. This user-friendly resource presents high school teachers with a logical progression of pedagogical actions, classroom norms, and collaborative teacher team efforts to increase their knowledge and improve mathematics instruction. Explore strategies and techniques to effectively learn and teach significant mathematics concepts and provide all students with the precise, accurate information they need to achieve academic success. Combine student understanding of functions and algebraic concepts so that they can better decipher the world. Benefits Dig deep into mathematical modeling and reasoning to improve as both a learner and teacher of mathematics. Explore how to develop, select, or modify mathematics tasks in order to balance cognitive demand and engage students. Discover the three important norms to uphold in all mathematics classrooms. Learn to apply the tasks, questioning, and evidence (TQE) process to ensure mathematics instruction is focused, coherent, and rigorous. Gain clarity about the most productive progression of mathematical teaching and learning for high school. Watch short videos that show what classrooms that are developing mathematical understanding should look like. Contents Introduction Equations and Functions Structure of Equations Geometry Types of Functions Function Modeling Statistics and Probability Epilogue: Next Steps Appendix: Weight Loss Study Data References Index
This book is the first major study of advanced mathematical thinking as performed by mathematicians and taught to students in senior high school and university. Topics covered include the psychology of advanced mathematical thinking, the processes involved, mathematical creativity, proof, the role of definitions, symbols, and reflective abstraction. It is highly appropriate for the college professor in mathematics or the general mathematics educator.
Volume 3 of Research in Collegiate Mathematics Education (RCME) presents state-of-the-art research on understanding, teaching and learning mathematics at the post-secondary level. This volume contains information on methodology and research concentrating on these areas of student learning: Problem Solving; Understanding Concepts; and Understanding Proofs.
For algebra or geometry courses for teachers; courses in topics of mathematics; capstone courses for teachers or other students of mathematics; graduate courses for practicing teachers; or students who want a better understanding of mathematics. Filling a wide gap in the market, this text provides current and prospective high school teachers with an advanced treatment of mathematics that will help them understand the connections between the mathematics they will be teaching and the mathematics learned in college. It presents in-depth coverage of the most important concepts in high school mathematics: real numbers, functions, congruence, similarity, and more.
This book comprises the Proceedings of the 12th International Congress on Mathematical Education (ICME-12), which was held at COEX in Seoul, Korea, from July 8th to 15th, 2012. ICME-12 brought together 3500 experts from 92 countries, working to understand all of the intellectual and attitudinal challenges in the subject of mathematics education as a multidisciplinary research and practice. This work aims to serve as a platform for deeper, more sensitive and more collaborative involvement of all major contributors towards educational improvement and in research on the nature of teaching and learning in mathematics education. It introduces the major activities of ICME-12 which have successfully contributed to the sustainable development of mathematics education across the world. The program provides food for thought and inspiration for practice for everyone with an interest in mathematics education and makes an essential reference for teacher educators, curriculum developers and researchers in mathematics education. The work includes the texts of the four plenary lectures and three plenary panels and reports of three survey groups, five National presentations, the abstracts of fifty one Regular lectures, reports of thirty seven Topic Study Groups and seventeen Discussion Groups.