Download Free The Exploration Of Supramolecular Systems And Nanostructures By Photochemical Techniques Book in PDF and EPUB Free Download. You can read online The Exploration Of Supramolecular Systems And Nanostructures By Photochemical Techniques and write the review.

The Exploration of Supramolecular Systems and Nanostructures by Photochemical Techniques provides a comprehensive view of the most commonly used photochemical and photophysical techniques and their applications to the study of supramolecular systems. Optical inputs are extremely powerful in the study of nanostructures since they can be used both to “read” the state of the system and to provide it energy to work. After a brief introduction to the realm of photochemistry, electronically excited state formation and the different pathways of excited state deactivation, the book focuses on the theoretical basis and the practical aspects related to the most widely used photophysical and photochemical techniques, from absorption to time-resolved emission techniques with polarized light. Each chapter illustrates an example of the application of that particular technique to the study of a supramolecular system. The Exploration of Supramolecular Systems and Nanostructures by Photochemical Techniques not only discusses the latest advances of the field of supramolecular photochemistry but it also offers technical and operative details useful in the laboratory. It is therefore suitable for both the novice and the expert.
The Exploration of Supramolecular Systems and Nanostructures by Photochemical Techniques provides a comprehensive view of the most commonly used photochemical and photophysical techniques and their applications to the study of supramolecular systems. Optical inputs are extremely powerful in the study of nanostructures since they can be used both to “read” the state of the system and to provide it energy to work. After a brief introduction to the realm of photochemistry, electronically excited state formation and the different pathways of excited state deactivation, the book focuses on the theoretical basis and the practical aspects related to the most widely used photophysical and photochemical techniques, from absorption to time-resolved emission techniques with polarized light. Each chapter illustrates an example of the application of that particular technique to the study of a supramolecular system. The Exploration of Supramolecular Systems and Nanostructures by Photochemical Techniques not only discusses the latest advances of the field of supramolecular photochemistry but it also offers technical and operative details useful in the laboratory. It is therefore suitable for both the novice and the expert.
Connects principles, processes, and experimental techniques with current research in the continuously expanding field of photochemistry and photophysics Photochemistry and Photophysics covers a wide spectrum of concepts in photochemistry and photophysics, introducing principles, processes, and experimental techniques, with a wealth of examples of current applications and research spanning natural photosynthesis, photomedicine, photochromism, luminescent sensors, energy conversion and storage, and sustainability issues. In this Second Edition, several chapters have been revised considerably and others have been almost entirely rewritten. A number of schemes and figures have been added, and the reference list at the end of each chapter has been extended and updated. Clearly structured, the first part of the text discusses the formation, properties, and reactivity of excited states of inorganic and organic molecules and supramolecular species, and the second part focuses on photochemical and photophysical processes in nature and artificial systems. Readers will learn how photochemical and photophysical processes can be exploited for novel, unusual, and unexpected applications. Written by world-renowned experts in the field, Photochemistry and Photophysics includes information on: Formation, electronic structure, properties, chemical reactivity, and radiative and nonradiative decay of electronically excited states Fundamental concepts and theoretical approaches concerning energy transfer and electron transfer Peculiar light absorption/emission spectra and the photochemical properties of the various families of organic molecules and metal complexes Equipment, techniques, procedures, and reference data concerning photochemical and photophysical experiments, including warnings to avoid mistakes and misinterpretations Relationships between photochemical, photophysical, and electrochemical properties of molecules that enable interconversion between light and chemical energy With an appropriate mix of introductory, intermediate, and advanced content, this is an ideal textbook resource for related undergraduate and postgraduate courses. The text is also valuable for scientists already active in photochemical and photophysical research who will find helpful suggestions to undertake novel scientific projects.
The need to address the energy problem and formulate a lasting solution to tame climate change has never been so urgent. The rise of various renewable energy sources, such as solar cell technologies, has given humanity a glimpse of hope that can delay the catastrophic effects of these problems after decades of neglect. This review volume provides in-depth discussion of the fundamental photophysical processes as well as the state-of-the-art device engineering of various emerging photovoltaic technologies, including organic (fullerene, non-fullerene, and ternary), dye-sensitized (ruthenium, iron, and quantum dot), and hybrid metal-halide perovskite solar cells. The book is essential reading for graduate and postgraduate students involved in the photophysics and materials science of solar cell technologies.
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
Fluorescence Microscopy is a precise and widely employed technique in many research and clinical areas nowadays. Fluorescence Microscopy In Life Sciences introduces readers to both the fundamentals and the applications of fluorescence microscopy in the biomedical field as well as biological research. Readers will learn about physical and chemical mechanisms giving rise to the phenomenon of luminescence and fluorescence in a comprehensive way. Also, the different processes that modulate fluorescence efficiency and fluorescence features are explored and explained.
Hybrid organic-inorganic materials and the rational design of their interfaces open up the access to a wide spectrum of functionalities not achievable with traditional concepts of materials science. This innovative class of materials has a major impact in many application domains such as optics, electronics, mechanics, energy storage and conversion, protective coatings, catalysis, sensing and nanomedicine. The properties of these materials do not only depend on the chemical structure, and the mutual interaction between their nano-scale building blocks, but are also strongly influenced by the interfaces they share. This handbook focuses on the most recent investigations concerning the design, control, and dynamics of hybrid organic-inorganic interfaces, covering: (i) characterization methods of interfaces, (ii) innovative computational approaches and simulation of interaction processes, (iii) in-situ studies of dynamic aspects controlling the formation of these interfaces, and (iv) the role of the interface for process optimization, devices, and applications in such areas as optics, electronics, energy and medicine.
FUNDAMENTALS OF PORPHYRIN CHEMISTRY An indispensable and concise overview of the chemistry of porphyrins and related molecules In Fundamentals of Porphyrin Chemistry: A 21st Century Approach, a team of distinguished researchers delivers a compact and accessible introduction to the broad field of porphyrin chemistry. It discusses the basics of porphyrin synthesis and structure, as well as that of related molecules, and the current and future roles that porphyrins play in chemical transformations, materials design and synthesis, energy capture and transduction, human health, and the environment. This edited volume is a self-contained tutorial on concepts of critical importance to porphyrin chemistry and serves as the foundation for discussions about the applications of porphyrin-related compounds found in the second volume. This book contains: A thorough introduction to porphyrins, including their structure, nomenclature, naturally occurring porphyrins, synthetic porphyrins, and common families of porphyrin-related compounds Comprehensive explorations of chemical porphyrin synthesis, including how to synthesize porphyrins from simple, symmetric, and advanced ABCD-substituted porphyrins Practical discussions of the physical characteristics of porphyrins, including their structural features, electronic structure, spectroscopy, magnetism, electrochemistry, and electron transfer processes Perfect for experienced academic researchers in the field of porphyrin chemistry seeking a quick reference, Fundamentals of Porphyrin Chemistry: A 21st Century Approach is also an indispensable resource for researchers new to the field who need an overview directing them to literature in more focused areas.
With contributions from the most prominent experts around the world, this resource provides an accessible summary of electrochemical techniques and the applications of electrochemical concepts to molecular-level systems. It describes the most important electro-active functional supramolecular systems developed so far, including rotaxanes and catenanes as molecular machines and as elements for information processing; dendrimers as molecular batteries, sensors, light harvesting antennae, and drug delivery systems; and bio-hybrid devices.