Download Free The Evolution Of Mating Systems In Insects And Arachnids Book in PDF and EPUB Free Download. You can read online The Evolution Of Mating Systems In Insects And Arachnids and write the review.

Insects and arachnids display the most impressive diversity of mating and social behaviour among all animals. This book investigates sexual competition in these groups, and the variety of ways in which males and females pursue, persuade, manipulate, control and help one another, enabling us to gain a better understanding of how conflicts and confluences of interest evolve together. Each chapter provides a comprehensive review of mating systems in particular insect and arachnid groups, discusses intrinsic and extrinsic factors responsible for observed mating strategies, and suggests fruitful avenues for further research. The book culminates in a synthesis, reviewing the date in terms of the theory of sexual conflict. This broad-based book will be of immense value to students and researchers interested in reproductive strategies, behavioural ecology, entomology and arachnology.
Insects and arachnids display the most impressive diversity of mating and social behavior among all animals. This book investigates sexual competition in these groups, and the variety of ways in which males and females pursue, persuade, manipulate, control and help one another, enabling us to gain a better understanding of how conflicts and confluences of interest evolve together. Each chapter provides a comprehensive review of mating systems in particular insect and arachnid groups, discusses intrinsic and extrinsic factors responsible for observed mating strategies, and suggests fruitful avenues for further research. The book culminates in a synthesis, reviewing the data in terms of the theory of sexual conflict. This broad-based book will be of immense value to students and researchers interested in reproductive strategies, behavioral ecology, entomology and arachnology.
Sperm Competition and the Evolution of Animal Mating Systems describes the role of sperm competition in selection on a range of attributes from gamete morphology to species mating systems. This book is organized into 19 chapters and begins with the conceptualization of sperm competition as a subset of sexual selection and its implications for the insects. The following chapter describes the relationship between multiple mating and female fitness, with an emphasis on determining the conditions under which selection on females is likely to counteract selection on males for avoiding sperm competition. Other chapters consider the female perspective on sperm competition; the evolutionary causation at the level of the individual male gamete; and the correlation of high paternal investment and sperm precedence in the insects. The remaining chapters are arranged phylogenetically and explore the sperm competition in diverse animal taxa, such as the Drosophila, Lepidoptera, spiders, amphibians, and reptiles. These chapters also cover the evolution of direct versus indirect sperm transfer among the arachnids or the problem for kinship theory presented by multiple mating and sperm competition in the Hymenoptera. This book further discusses the remarkable potential for sperm competition among certain temperate bat species whose females store sperm through winter hibernation and the mixed strategies and male-caused female genital trauma as possible sperm competition adaptations in poeciliid fishes. The concluding chapter examines the predictions concerning testes size and mating systems in the primates and the possible role of sperm competition in human selection. This book is of great value to reproductive biologists and researchers.
'Social' insects and arachnids exhibit complex forms of behavior that involve cooperation in building a nest, defending against attackers or rearing offspring. This book is a comprehensive, up-to-date guide to sociality and its evolution in a wide range of taxa.
Insects display a staggering diversity of mating and social behaviours. Studying these systems provides insights into a wide range of evolutionary and behavioural questions, such as the evolution of sex, sexual selection, sexual conflict, and parental care. This edited volume provides an authoritative update of the landmark book in the field, The Evolution of Insect Mating Systems (Thornhill and Alcock, 1983), which had such a huge impact in shaping adaptationist approaches to the study of animal behaviour and influencing the study of the evolution of reproductive behaviour far beyond the taxonomic remit of insects. This accessible new volume brings the empirical and conceptual scope of the original book fully up to date, incorporating the wealth of new knowledge and research of the last 30 years. It explores the evolution of complex forms of sex determination in insects, and the role of sexual selection in shaping the evolution of mating systems. Selection arising via male contest competition and female choice (both before and after copulation) are discussed, as are the roles of parasites and pathogens in mediating the strength of sexual selection, and the role that parental care plays in successful reproduction. The Evolution of Insect Mating Systems is suitable for both graduate students and researchers interested in insect mating systems or behaviour from an evolutionary, genetical, physiological, or ecological perspective. Due to its interdisciplinary and concept-driven approach, it will also be of relevance and use to a broad audience of evolutionary biologists.
Spiders are often underestimated as suitable behavioural models because of the general belief that due to their small brains their behaviour is innate and mostly invariable. Challenging this assumption, this fascinating book shows that rather than having a limited behavioural repertoire, spiders show surprising cognitive abilities, changing their behaviour to suit their situational needs. The team of authors unravels the considerable intra-specific as well as intra-individual variability and plasticity in different behaviours ranging from foraging and web building to communication and courtship. An introductory chapter on spider biology, systematics and evolution provides the reader with the necessary background information to understand the discussed behaviours and helps to place them into an evolutionary context. Highlighting an under-explored area of behaviour, this book will provide new ideas for behavioural researchers and students unfamiliar with spiders as well as a valuable resource for those already working in this intriguing field.
This up-to-date review examines key areas of animal behaviour, including communication, cognition, conflict, cooperation, sexual selection and behavioural variation. Various tests are covered, including recent empirical examples.
Chronicles the evolution of insects and explains how evolutionary innovations have enabled them to disperse widely, occupy narrow niches, and survive global catastrophes. --Publisher's description.
Darwin famously described special difficulties in explaining social evolution in insects. More than a century later, the evolution of sociality - defined broadly as cooperative group living - remains one of the most intriguing problems in biology. Providing a unique perspective on the study of social evolution, this volume synthesizes the features of animal social life across the principle taxonomic groups in which sociality has evolved. The chapters explore sociality in a range of species, from ants to primates, highlighting key natural and life history data and providing a comparative view across animal societies. In establishing a single framework for a common, trait-based approach towards social synthesis, this volume will enable graduate students and investigators new to the field to systematically compare taxonomic groups and reinvigorate comparative approaches to studying animal social evolution.
A FINALIST FOR THE PULITZER PRIZE NAMED A BEST BOOK OF THE YEAR BY THE NEW YORK TIMES BOOK REVIEW, SMITHSONIAN, AND WALL STREET JOURNAL A major reimagining of how evolutionary forces work, revealing how mating preferences—what Darwin termed "the taste for the beautiful"—create the extraordinary range of ornament in the animal world. In the great halls of science, dogma holds that Darwin's theory of natural selection explains every branch on the tree of life: which species thrive, which wither away to extinction, and what features each evolves. But can adaptation by natural selection really account for everything we see in nature? Yale University ornithologist Richard Prum—reviving Darwin's own views—thinks not. Deep in tropical jungles around the world are birds with a dizzying array of appearances and mating displays: Club-winged Manakins who sing with their wings, Great Argus Pheasants who dazzle prospective mates with a four-foot-wide cone of feathers covered in golden 3D spheres, Red-capped Manakins who moonwalk. In thirty years of fieldwork, Prum has seen numerous display traits that seem disconnected from, if not outright contrary to, selection for individual survival. To explain this, he dusts off Darwin's long-neglected theory of sexual selection in which the act of choosing a mate for purely aesthetic reasons—for the mere pleasure of it—is an independent engine of evolutionary change. Mate choice can drive ornamental traits from the constraints of adaptive evolution, allowing them to grow ever more elaborate. It also sets the stakes for sexual conflict, in which the sexual autonomy of the female evolves in response to male sexual control. Most crucially, this framework provides important insights into the evolution of human sexuality, particularly the ways in which female preferences have changed male bodies, and even maleness itself, through evolutionary time. The Evolution of Beauty presents a unique scientific vision for how nature's splendor contributes to a more complete understanding of evolution and of ourselves.