Download Free The Epigenetics Of Autoimmune Diseases Book in PDF and EPUB Free Download. You can read online The Epigenetics Of Autoimmune Diseases and write the review.

This book will address the growing roles of epigenetics in disease pathogenesis, and review the contribution of epigenetic modifications to disease onset and progression. The roles that epigenetics plays in facilitating effects of the environment on allergy and immunologic diseases will be reviewed. The book is divided into three parts – the first is an introduction to epigenetics and the methods that have been developed to study epigenetics, the second addresses epigenetics in allergic diseases and the third part will cover epigenetics in autoimmune diseases. With the rapid expansion of knowledge of how genes are regulated and how this regulation affects disease phenotypes, this book will be attractive to experienced researchers as well as those just launching an epigenetics research program. It will also be of interest to allergist, immunologists, rheumatologists and dermatologist who are engaged in clinical practice as a resource for understanding the basis for personalized and precision medicine. For example, the role that epigenetics plays in the pathogenesis in various allergic and autoimmune disorders and how this determines disease phenotypes will be covered extensively in this book. This book will thus help fill the gap in available resources on epigenetics in allergy and autoimmune diseases.
Epigenetics is one of the fastest growing fields of sciences, illuminating studies of human diseases by looking beyond genetic make-up and acknowledging that outside factors play a role in gene expression. The goal of this volume is to highlight those diseases or conditions for which we have advanced knowledge of epigenetic factors such as cancer, autoimmune disorders and aging as well as those that are yielding exciting breakthroughs in epigenetics such as diabetes, neurobiological disorders and cardiovascular disease. Where applicable, attempts are made to not only detail the role of epigenetics in the etiology, progression, diagnosis and prognosis of these diseases, but also novel epigenetic approaches to the treatment of these diseases. Chapters are also presented on human imprinting disorders, respiratory diseases, infectious diseases and gynecological and reproductive diseases. Since epigenetics plays a major role in the aging process, advances in the epigenetics of aging are highly relevant to many age-related human diseases. Therefore, this volume closes with chapters on aging epigenetics and breakthroughs that have been made to delay the aging process through epigenetic approaches. With its translational focus, this book will serve as valuable reference for both basic scientists and clinicians alike. Comprehensive coverage of fundamental and emergent science and clinical usage Side-by-side coverage of the basis of epigenetic diseases and their treatments Evaluation of recent epigenetic clinical breakthroughs
Computational Epigenetics and Diseases, written by leading scientists in this evolving field, provides a comprehensive and cutting-edge knowledge of computational epigenetics in human diseases. In particular, the major computational tools, databases, and strategies for computational epigenetics analysis, for example, DNA methylation, histone modifications, microRNA, noncoding RNA, and ceRNA, are summarized, in the context of human diseases. This book discusses bioinformatics methods for epigenetic analysis specifically applied to human conditions such as aging, atherosclerosis, diabetes mellitus, schizophrenia, bipolar disorder, Alzheimer disease, Parkinson disease, liver and autoimmune disorders, and reproductive and respiratory diseases. Additionally, different organ cancers, such as breast, lung, and colon, are discussed. This book is a valuable source for graduate students and researchers in genetics and bioinformatics, and several biomedical field members interested in applying computational epigenetics in their research. - Provides a comprehensive and cutting-edge knowledge of computational epigenetics in human diseases - Summarizes the major computational tools, databases, and strategies for computational epigenetics analysis, such as DNA methylation, histone modifications, microRNA, noncoding RNA, and ceRNA - Covers the major milestones and future directions of computational epigenetics in various kinds of human diseases such as aging, atherosclerosis, diabetes, heart disease, neurological disorders, cancers, blood disorders, liver diseases, reproductive diseases, respiratory diseases, autoimmune diseases, human imprinting disorders, and infectious diseases
The Mosaic of Autoimmunity: The Novel Factors of Autoimmune Diseases describes the multifactorial origin and diversity of expression of autoimmune diseases in humans. The term implies that different combinations of factors in autoimmunity produce varying and unique clinical pictures in a wide spectrum of autoimmune diseases. Most of the factors involved in autoimmunity can be categorized into four groups: genetic, immune defects, hormonal and environmental factors. In this book, the environmental factors are reviewed, including infectious agents, vaccines as triggers of autoimmunity, smoking and its relationship with rheumatoid arthritis, systemic lupus erythematosus, thyroid disease, multiple sclerosis and inflammatory bowel diseases. An entirely new syndrome, the autoimmune/inflammatory syndrome induced by adjuvants (ASIA), is also included, along with other diseases that are now recognized as having an autoimmune etiopathogenesis.
"After reviewing the field's history and context, the authors introduce and explain each key epigenetic mechanism. Next, they extensively discuss the roles these mechanisms may play in inheritance, development, health and disease, behavior, evolution, ecology, and the interactions of individual organisms with their environments"--Page 4 of cover.
Twin and Family Studies of Epigenetics, Volume 27, the latest release in the Translational Epigenetics series, gathers expert opinions on epigenetic twin and family study research methods, recent findings across various disease areas, and future directions. The book provides in-depth coverage of epigenetics fundamentals, twin and family epigenetic study design, and the broader role of epigenetics in answering questions on the developmental origins of health and disease. Throughout the volume, twin and family studies are employed to examine causes of epigenetic variation, the relationship between epigenetic modifications and mental illness, cancers, cardiovascular disease, diabetes, obesity, high blood pressure, and more. Emerging research methods applied in twin and family studies discussed include imaging epigenetics, exposure-specific DNA methylation changes, and unravelling time trends in epigenetic effects. - Offers a practical, interdisciplinary approach across epigenetics, epidemiology and various disease specialties - Applies epigenetic twin and family studies to determine the relationship between epigenetics and mental illness, cancers, cardiovascular disease, diabetes, obesity and high blood pressure, among other diseases and disorders - Features chapter contributions from a wide range of international researchers in the field
DNA Methylation and Complex Human Disease reviews the possibilities of methyl-group-based epigenetic biomarkers of major diseases, tailored epigenetic therapies, and the future uses of high-throughput methylome technologies. This volume includes many pertinent advances in disease-bearing research, including obesity, type II diabetes, schizophrenia, and autoimmunity. DNA methylation is also discussed as a plasma and serum test for non-invasive screening, diagnostic and prognostic tests, as compared to biopsy-driven gene expression analysis, factors which have led to the use of DNA methylation as a potential tool for determining cancer risk, and diagnosis between benign and malignant disease. Therapies are at the heart of this volume and the possibilities of DNA demethylation. In cancer, unlike genetic mutations, DNA methylation and histone modifications are reversible and thus have shown great potential in the race for effective treatments. In addition, the authors present the importance of high-throughput methylome analysis, not only in cancer, but also in non-neoplastic diseases such as rheumatoid arthritis. - Discusses breaking biomarker research in major disease families of current health concern and research interest, including obesity, type II diabetes, schizophrenia, and autoimmunity - Summarizes advances not only relevant to cancer, but also in non-neoplastic disease, currently an emerging field - Describes wholly new concepts, including the linking of metabolic pathways with epigenetics - Provides translational researchers with the knowledge of both basic research and clinic applications of DNA methylation in human diseases
This volume provides comprehensive information on how mapping an individual's epigenome can be medically relevant and holds the potential to improve preventive medicine and precision therapeutics at an early-stage (prior to disease onset). In order to advance clinical adoption of the recently developed epigenetic approaches, it is necessary for translational scientists, clinicians, and students to gain a better understanding about epigenetic mechanisms that are associated with a particular disorder; and to be able to effectively identify biomarkers that can be applied in drug development and for better diagnosis and prognosis of diseases. Prognostic Epigenetics is the most-inclusive volume to-date specifically dedicated to epigenetic markers that have been developed for prognosis of diseases, recent advances in this field, the clinical implementation of this research, and the future outlook.
Epigenetics and Dermatology explores the role of epigenetics in the pathogenesis of autoimmune-related skin diseases and skin cancer. Leading contributors cover common and uncommon skin conditions in which extensive epigenetic research has been done. They explain how environmental exposures (chemicals, drugs, sunlight, diet, stress, smoking, infection, etc.) in all stages of life (from a fetus in-utero to an elderly person) may result in epigenetic changes that lead to development of some skin diseases in life. They also discuss the possibilities of new and emergent epigenetic treatments which are gradually being adopted in management of various skin diseases. Chapters follow a conventional structure, covering fundamental biology of the disease condition, etiology and pathogenesis, diagnosis, commonly available treatments, and epigenetic therapy where applicable. Discusses the basic biology of skin diseases and skin cancers induced or aggravated by aberrant epigenetic changes Evaluates how to approach autoimmune-related skin diseases from a therapeutic perspective using the wealth of emergent epigenetic clinical trials Offers a coherent and structured table of contents with basic epigenetic biology followed by discussion of the spectrum of rheumatologic through neoplastic skin diseases, finally ending with a discourse on epigenetic therapy
Epigenetics of the Immune System focuses on different aspects of epigenetics and immunology, providing readers with the fundamental mechanisms relating to epigenetics and the immune system. This book provides in-depth information on immune cells as a toolbox in deciphering systematically regulated mechanisms using "omics" and computational biology approaches. In addition, the book presents the translational importance of epigenetics and the immune system in our understanding of pathophysiology in diseases and its therapeutic applications.