Download Free The Elements Of High School Mathematics Book in PDF and EPUB Free Download. You can read online The Elements Of High School Mathematics and write the review.

Empower students to be the change—join the teaching mathematics for social justice movement! We live in an era in which students have —through various media and their lived experiences— a more visceral experience of social, economic, and environmental injustices. However, when people think of social justice, mathematics is rarely the first thing that comes to mind. Through model lessons developed by over 30 diverse contributors, this book brings seemingly abstract high school mathematics content to life by connecting it to the issues students see and want to change in the world. Along with expert guidance from the lead authors, the lessons in this book explain how to teach mathematics for self- and community-empowerment. It walks teachers step-by-step through the process of using mathematics—across all high school content domains—as a tool to explore, understand, and respond to issues of social injustice including: environmental injustice; wealth inequality; food insecurity; and gender, LGBTQ, and racial discrimination. This book features: Content cross-referenced by mathematical concept and social issues Downloadable instructional materials for student use User-friendly and logical interior design for daily use Guidance for designing and implementing social justice lessons driven by your own students’ unique passions and challenges Timelier than ever, teaching mathematics through the lens of social justice will connect content to students’ daily lives, fortify their mathematical understanding, and expose them to issues that will make them responsive citizens and leaders in the future.
An exciting look at the world of elementary mathematics Elements of Mathematics takes readers on a fascinating tour that begins in elementary mathematics--but, as John Stillwell shows, this subject is not as elementary or straightforward as one might think. Not all topics that are part of today's elementary mathematics were always considered as such, and great mathematical advances and discoveries had to occur in order for certain subjects to become "elementary." Stillwell examines elementary mathematics from a distinctive twenty-first-century viewpoint and describes not only the beauty and scope of the discipline, but also its limits. From Gaussian integers to propositional logic, Stillwell delves into arithmetic, computation, algebra, geometry, calculus, combinatorics, probability, and logic. He discusses how each area ties into more advanced topics to build mathematics as a whole. Through a rich collection of basic principles, vivid examples, and interesting problems, Stillwell demonstrates that elementary mathematics becomes advanced with the intervention of infinity. Infinity has been observed throughout mathematical history, but the recent development of "reverse mathematics" confirms that infinity is essential for proving well-known theorems, and helps to determine the nature, contours, and borders of elementary mathematics. Elements of Mathematics gives readers, from high school students to professional mathematicians, the highlights of elementary mathematics and glimpses of the parts of math beyond its boundaries.
Excerpt from The Elements of High School Mathematics Comprising Arithmetic, Practical Geometry, and Algebra Never was the recognition of pedagogical demands so general among teachers of high school mathematics as it is today. Nor was it ever so clearly apparent as it is today that the problem of the teacher of mathematics is chiefly a problem of a two-fold adaptation of material: first, to individual needs; second, to the community need. Both needs being in continual change, the latter very markedly, reorganization is always opportune. That we are now in a special sense in a period of reorganization is supported also by pertinent evidence. The Commission on the Reorganization of Secondary School Mathematics of the National Education Association, after three years of work, has recently published, through the United States Bureau of Education, its body of conclusions as to a plan of very radical reorganization of the courses in high school mathematics. About a year ago the National Committee on Mathematical Requirements in Secondary Schools also issued its now famous Secondary School Circular, 1920, No. 5, on the Reorganization of the Early Courses in High School Mathematics. The latter committee worked under the auspices of the Mathematical Association of America, and had in its membership a representative of every section of the nation and of every segment of the American school system. Both of these very significant reports urged thorough-going reorganization of existing courses: curtailing and eliminating much old matter and introducing much new material; but leaving the questions of form of organization and mode of presentation of the material open to individual preference. About the Publisher Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works.
This textbook offers a rigorous presentation of mathematics before the advent of calculus. Fundamental concepts in algebra, geometry, and number theory are developed from the foundations of set theory along an elementary, inquiry-driven path. Thought-provoking examples and challenging problems inspired by mathematical contests motivate the theory, while frequent historical asides reveal the story of how the ideas were originally developed. Beginning with a thorough treatment of the natural numbers via Peano’s axioms, the opening chapters focus on establishing the natural, integral, rational, and real number systems. Plane geometry is introduced via Birkhoff’s axioms of metric geometry, and chapters on polynomials traverse arithmetical operations, roots, and factoring multivariate expressions. An elementary classification of conics is given, followed by an in-depth study of rational expressions. Exponential, logarithmic, and trigonometric functions complete the picture, driven by inequalities that compare them with polynomial and rational functions. Axioms and limits underpin the treatment throughout, offering not only powerful tools, but insights into non-trivial connections between topics. Elements of Mathematics is ideal for students seeking a deep and engaging mathematical challenge based on elementary tools. Whether enhancing the early undergraduate curriculum for high achievers, or constructing a reflective senior capstone, instructors will find ample material for enquiring mathematics majors. No formal prerequisites are assumed beyond high school algebra, making the book ideal for mathematics circles and competition preparation. Readers who are more advanced in their mathematical studies will appreciate the interleaving of ideas and illuminating historical details.
An unusually thoughtful and well-constructed introduction to the serious study of mathematics, this book requires no background beyond high school courses in plane geometry and elementary algebra. From that starting point, it is designed to lead readers willing to work through its exercises and problems to the achievement of basic mathematical literacy. The text provides a fundamental orientation in modern mathematics, an essential vocabulary of mathematical terms, and some facility in the use of mathematical concepts and symbols. From there, readers will be equipped to move on to more serious work, and they'll be well on the way to having the tools essential for work in the physical sciences, engineering, and the biological and social sciences. Starting with elementary treatments of algebra, logic, and set theory, the book advances to explorations of plane analytic geometry, relations and functions, numbers, and calculus. Subsequent chapters discuss probability, statistical inference, and abstract mathematical theories. Each section is enhanced with exercises in the text and problems at the end. Answers to the exercises and some of the problems are included at the end of each section.
Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.
For algebra or geometry courses for teachers; courses in topics of mathematics; capstone courses for teachers or other students of mathematics; graduate courses for practicing teachers; or students who want a better understanding of mathematics. Filling a wide gap in the market, this text provides current and prospective high school teachers with an advanced treatment of mathematics that will help them understand the connections between the mathematics they will be teaching and the mathematics learned in college. It presents in-depth coverage of the most important concepts in high school mathematics: real numbers, functions, congruence, similarity, and more.