Download Free The Effect Of Radiation Damage On The Thermal Conductivity Of Graphite Book in PDF and EPUB Free Download. You can read online The Effect Of Radiation Damage On The Thermal Conductivity Of Graphite and write the review.

Nuclear Energy, Volume 102: Radiation Damage in Graphite provides a general account of the effects of irradiation on graphite. This book presents valuable work on the structure of the defects produced in graphite crystals by irradiation. Organized into eight chapters, this volume begins with an overview of the description of the methods of manufacturing graphite and of its physical properties. This text then presents details of the method of setting up a scale of irradiation dose. Other chapters consider the effect of irradiation at a given temperature on a physical property of graphite. This book discusses as well the changes in dimensions produced by irradiation and the effects of irradiation on the mechanical properties of graphite. The final chapter deals with the accumulation of stored energy, which is one of the main problems caused by the irradiation of graphite in nuclear reactors. This book is a valuable resource for physicists and chemical physicists.
Nuclear Graphite focuses on the development and uses of nuclear graphite, including machining practices, manufacture, nuclear properties and structure, radiation, and electrical resistance. The selection first discusses the applications of graphite in the nuclear industry, machining practices, and manufacture. Discussions focus on early, current, and future applications of graphite, impregnation, graphitization, purification, general machining techniques, and equipment and methods in the nuclear industry. The book then examines the structure and nuclear and properties of graphite. The text evaluates radiation-induced structural and dimensional changes; radiation effects on electrical and thermal properties; and radiation effects on mechanical properties. Topics include radiation effects on crystal structure, electrical resistance, thermoelectric power, magnetoresistance, coefficient of friction, irradiation under stress, and elastic moduli of nuclear graphite. The book also ponders on stored energy, annealing radiation effects, and gas-graphite systems. The selection is a dependable source of data for readers interested in the applications of nuclear graphite.
This study begins with a review of carbon materials, emphasizing structure and chemical bonding in various forms of carbon. It then goes on to discuss advanced technologies for the manufacture and modification of carbon-based materials and their practical applications.
It has been almost thirty years since the publication of a book that is entirely dedicated to the theory, description, characterization and measurement of the thermal conductivity of solids. The recent discovery of new materials which possess more complex crystal structures and thus more complicated phonon scattering mechanisms have brought innovative challenges to the theory and experimental understanding of these new materials. With the development of new and novel solid materials and new measurement techniques, this book will serve as a current and extensive resource to the next generation researchers in the field of thermal conductivity. This book is a valuable resource for research groups and special topics courses (8-10 students), for 1st or 2nd year graduate level courses in Thermal Properties of Solids, special topics courses in Thermal Conductivity, Superconductors and Magnetic Materials, and to researchers in Thermoelectrics, Thermal Barrier Materials and Solid State Physics.