Download Free The Effect Of Fire Book in PDF and EPUB Free Download. You can read online The Effect Of Fire and write the review.

Even before the myth of Prometheus, fire played a crucial ecological role around the world. Numerous plant communities depend on fire to generate species diversity in both time and space. Without fire such ecosystems would become sterile monocultures. Recent efforts to prohibit fire in fire dependent communities have contributed to more intense and more damaging fires. For these reasons, foresters, ecologists, land managers, geographers, and environmental scientists are interested in the behavior and ecological effects of fires. This book will be the first to focus on the chemistry and physics of fire as it relates to the ways in which fire behaves and the impacts it has on ecosystem function. Leading international contributors have been recruited by the editors to prepare a didactic text/reference that will appeal to both advanced students and practicing professionals.
California and other wildfire-prone western states have experienced a substantial increase in the number and intensity of wildfires in recent years. Wildlands and climate experts expect these trends to continue and quite likely to worsen in coming years. Wildfires and other disasters can be particularly devastating for vulnerable communities. Members of these communities tend to experience worse health outcomes from disasters, have fewer resources for responding and rebuilding, and receive less assistance from state, local, and federal agencies. Because burning wood releases particulate matter and other toxicants, the health effects of wildfires extend well beyond burns. In addition, deposition of toxicants in soil and water can result in chronic as well as acute exposures. On June 4-5, 2019, four different entities within the National Academies of Sciences, Engineering, and Medicine held a workshop titled Implications of the California Wildfires for Health, Communities, and Preparedness at the Betty Irene Moore School of Nursing at the University of California, Davis. The workshop explored the population health, environmental health, emergency preparedness, and health equity consequences of increasingly strong and numerous wildfires, particularly in California. This publication is a summary of the presentations and discussion of the workshop.
Historical and prescribed fire regimes for different regions in the continental U.S. were compared and literature on season of prescribed burning synthesized. In regions and vegetation types where considerable differences in fuel consumption exist among burning seasons, the effects of prescribed fire season appears to be driven more by fire-intensity differences among seasons than by phenology or growth stage of organisms at the time of fire. Where fuel consumption differs little among burning seasons, the effect of phenology or growth stage of organisms is often more apparent, because it is not overwhelmed by fire-intensity differences. Species in ecosystems that evolved with fire appear to be resilient to one or few out-of-season prescribed burns. Illus.
Fire in California’s Ecosystems describes fire in detail—both as an integral natural process in the California landscape and as a growing threat to urban and suburban developments in the state. Written by many of the foremost authorities on the subject, this comprehensive volume is an ideal authoritative reference tool and the foremost synthesis of knowledge on the science, ecology, and management of fire in California. Part One introduces the basics of fire ecology, including overviews of historical fires, vegetation, climate, weather, fire as a physical and ecological process, and fire regimes, and reviews the interactions between fire and the physical, plant, and animal components of the environment. Part Two explores the history and ecology of fire in each of California's nine bioregions. Part Three examines fire management in California during Native American and post-Euro-American settlement and also current issues related to fire policy such as fuel management, watershed management, air quality, invasive plant species, at-risk species, climate change, social dynamics, and the future of fire management. This edition includes critical scientific and management updates and four new chapters on fire weather, fire regimes, climate change, and social dynamics.
Toxic fire effluents are responsible for the majority of fire deaths, and an increasing large majority of fire injuries, driven by the widespread and increasing use of synthetic polymers. Fire safety has focused on preventing ignition and reducing flame spread through reducing the rate of heat release, while neglecting the important issue of fire toxicity. This is the first reference work on fire toxicity and the only scientific publication on the subject in the last 15 years.Assessment of toxic effects of fires is increasingly being recognised as a key factor in the assessment of fire hazards. This book raises important issues including the types of toxic effluents that different fires produce, their physiological effects, methods for generation and assessment of fire toxicity, current and proposed regulations and approaches to modelling the toxic impact of fires.The contributors to Fire toxicity represent an international team of the leading experts in each aspect of this challenging and important field. This book provides an important reference work for professionals in the fire community, including fire fighters, fire investigators, regulators, fire safety engineers, and formulators of fire-safe materials. It will also prove invaluable to researchers in academia and industry. - Investigates the controversial subject of toxic effluents as the cause of the majority of fire deaths and injuries - Describes the different types of toxic effluents and the specific fires that they produce, their physiological effects and methods for generation - Provides an overview of national and international fire safety regulations including current and proposed regulations such as a standardized framework for prediction of fire gas toxicity
This book has been published a decade after Fires Effects on Ecosystems by DeBano, Neary, and Folliott (1998), and builds on their foundation to update knowledge on natural post-fire processes and describe the use and effectiveness of various restoration strategies that may be applied when human intervention is warranted. The chapters in this book,
Wildfires kill many animals, but are populations of animals affected? How do animals survive the passage of fire? Why do some tree species survive and others die in a fire? Do frequent fires cause changes in plant community composition? Answering questions such as these requires an understanding of the ecological effects of fire. Aimed at senior undergraduate students, researchers, foresters and other land managers, Dr Whelan's book examines the changes wrought by fires with reference to general ecological theory. The impacts of fires on individual organisms, populations and communities are examined separately, and emphasis is placed on the importance of fire regime. Each chapter includes a listing of 'outstanding questions' that identify gaps in current knowledge. The book finishes by summarising the major aspects of ecology that are of particular relevance to management of fires - both protection against wildfires and deliberate use of fire.
The book provides a systematic review of the different applications for remote sensing and geographical information system techniques in research and management of forest fires. The authors have been involved in this field of research for several years. The book also benefits from data generated within the Megafires project, founded under the DG-XII of the European Union. A clear integration of research and experience is provided. New data gathered from fires affecting European countries between 1991 and 1997 are included as well as satellite images and auxiliary cartographic information. Geographic Information System files have been included in the attached CD-ROM depicting land cover, elevation, Koeppen classification climates and NOAA-AVHRR data of all European Mediterranean Europe at 1 sq km resolution. All these files are in Idrisi format and can be easily accessed from any GIS program. An Idrisi viewer has also been included in the CD-ROM.
For the past 4 billion years, the chemistry of the Earth's surface, where all life exists, has changed remarkably. Historically, these changes have occurred slowly enough to allow life to adapt and evolve. In more recent times, the chemistry of the Earth is being altered at a staggering rate, fueled by industrialization and an ever-growing human population. Human activities, from the rapid consumption of resources to the destruction of the rainforests and the expansion of smog-covered cities, are all leading to rapid changes in the basic chemistry of the Earth. The Third Edition of Biogeochemistry considers the effects of life on the Earth's chemistry on a global level. This expansive text employs current technology to help students extrapolate small-scale examples to the global level, and also discusses the instrumentation being used by NASA and its role in studies of global change. With the Earth's changing chemistry as the focus, this text pulls together the many disparate fields that are encompassed by the broad reach of biogeochemistry. With extensive cross-referencing of chapters, figures, and tables, and an interdisciplinary coverage of the topic at hand, this text will provide an excellent framework for courses examining global change and environmental chemistry, and will also be a useful self-study guide. Emphasizes the effects of life on the basic chemistry of the atmosphere, the soils, and seawaters of the EarthCalculates and compares the effects of industrial emissions, land clearing, agriculture, and rising population on Earth's chemistrySynthesizes the global cycles of carbon, nitrogen, phosphorous, and sulfur, and suggests the best current budgets for atmospheric gases such as ammonia, nitrous oxide, dimethyl sulfide, and carbonyl sulfideIncludes an extensive review and up-to-date synthesis of the current literature on the Earth's biogeochemistry.
How the biggest forest fire in North American history affected and changed forest fire management.