Download Free The E M Stein Lectures On Hardy Spaces Book in PDF and EPUB Free Download. You can read online The E M Stein Lectures On Hardy Spaces and write the review.

​The book The E. M. Stein Lectures on Hardy Spaces is based on a graduate course on real variable Hardy spaces which was given by E.M. Stein at Princeton University in the academic year 1973-1974. Stein, along with C. Fefferman and G. Weiss, pioneered this subject area, removing the theory of Hardy spaces from its traditional dependence on complex variables, and to reveal its real-variable underpinnings. This book is based on Steven G. Krantz’s notes from the course given by Stein. The text builds on Fefferman's theorem that BMO is the dual of the Hardy space. Using maximal functions, singular integrals, and related ideas, Stein offers many new characterizations of the Hardy spaces. The result is a rich tapestry of ideas that develops the theory of singular integrals to a new level. The final chapter describes the major developments since 1974. This monograph is of broad interest to graduate students and researchers in mathematical analysis. Prerequisites for the book include a solid understanding of real variable theory and complex variable theory. A basic knowledge of functional analysis would also be useful.
This book introduces the real variable theory of HP spaces briefly and concentrates on its applications to various aspects of analysis fields. It consists of four chapters. Chapter 1 introduces the basic theory of Fefferman-Stein on real HP spaces. Chapter 2 describes the atomic decomposition theory and the molecular decomposition theory of real HP spaces. In addition, the dual spaces of real HP spaces, the interpolation of operators in HP spaces, and the interpolation of HP spaces are also discussed in Chapter 2. The properties of several basic operators in HP spaces are discussed in Chapter 3 in detail. Among them, some basic results are contributed by Chinese mathematicians, such as the decomposition theory of weak HP spaces and its applications to the study on the sharpness of singular integrals, a new method to deal with the elliptic Riesz means in HP spaces, and the transference theorem of HP-multipliers etc. The last chapter is devoted to applications of real HP spaces to approximation theory.
Systematically constructing an optimal theory, this monograph develops and explores several approaches to Hardy spaces in the setting of Alhlfors-regular quasi-metric spaces. The text is divided into two main parts, with the first part providing atomic, molecular, and grand maximal function characterizations of Hardy spaces and formulates sharp versions of basic analytical tools for quasi-metric spaces, such as a Lebesgue differentiation theorem with minimal demands on the underlying measure, a maximally smooth approximation to the identity and a Calderon-Zygmund decomposition for distributions. These results are of independent interest. The second part establishes very general criteria guaranteeing that a linear operator acts continuously from a Hardy space into a topological vector space, emphasizing the role of the action of the operator on atoms. Applications include the solvability of the Dirichlet problem for elliptic systems in the upper-half space with boundary data from Hardy spaces. The tools established in the first part are then used to develop a sharp theory of Besov and Triebel-Lizorkin spaces in Ahlfors-regular quasi-metric spaces. The monograph is largely self-contained and is intended for mathematicians, graduate students and professionals with a mathematical background who are interested in the interplay between analysis and geometry.
Uchiyama's decomposition of BMO functions is considered the "Mount Everest of Hardy space theory". This book is based on the draft, which the author completed before his sudden death in 1997. Nowadays, his contributions are extremely influential in various fields of analysis, leading to further breakthroughs.
Harmonic Analysis in China is a collection of surveys and research papers written by distinguished Chinese mathematicians from within the People's Republic of China and expatriates. The book covers topics in analytic function spaces of several complex variables, integral transforms, harmonic analysis on classical Lie groups and manifolds, LP- estimates of the Cauchy-Riemann equations and wavelet transforms. The reader will also be able to trace the great influence of the late Professor Loo-keng Hua's ideas and methods on research into harmonic analysis on classical domains and the theory of functions of several complex variables. Western scientists will thus become acquainted with the unique features and future trends of harmonic analysis in China. Audience: Analysts, as well as engineers and physicists who use harmonic analysis.
This self-contained text provides an introduction to modern harmonic analysis in the context in which it is actually applied, in particular, through complex function theory and partial differential equations. It takes the novice mathematical reader from the rudiments of harmonic analysis (Fourier series) to the Fourier transform, pseudodifferential operators, and finally to Heisenberg analysis.
Award-winning monograph of the Ferran Sunyer i Balaguer Prize 1997. This book is a self-contained exposition of the spectral theory of Toeplitz operators with piecewise continuous symbols and singular integral operators with piecewise continuous coefficients. It includes an introduction to Carleson curves, Muckenhoupt weights, weighted norm inequalities, local principles, Wiener-Hopf factorization, and Banach algebras generated by idempotents. Some basic phenomena in the field and the techniques for treating them came to be understood only in recent years and are comprehensively presented here for the first time. The material has been polished in an effort to make advanced topics accessible to a broad readership. The book is addressed to a wide audience of students and mathematicians interested in real and complex analysis, functional analysis and operator theory.
The definite mathematical treatment of this important area, written by one of the founders of the field.
With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle. With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory. Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis, Complex Analysis will be welcomed by students of mathematics, physics, engineering and other sciences. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Complex Analysis is the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.
This volume originated in talks given in Cortona at the conference "Geometric aspects of harmonic analysis" held in honor of the 70th birthday of Fulvio Ricci. It presents timely syntheses of several major fields of mathematics as well as original research articles contributed by some of the finest mathematicians working in these areas. The subjects dealt with are topics of current interest in closely interrelated areas of Fourier analysis, singular integral operators, oscillatory integral operators, partial differential equations, multilinear harmonic analysis, and several complex variables. The work is addressed to researchers in the field.