Download Free The Dynamics Of Coastal Models Book in PDF and EPUB Free Download. You can read online The Dynamics Of Coastal Models and write the review.

Textbook for graduate students and an introduction for researchers to coastal basins through simple hydrodynamics.
The book provides a comprehensive and up-to-date overview of the physical processes which, according to the present state of knowledge, determine the evolution of coastal systems and their response to human interventions. This response depends to a large degree on the self-organising properties of coastal dynamics, which form a leading theme throughout the book. The basic theoretical ideas are explained in text and figures and also in formulas for the more mathematically inclined reader. Theories are illustrated with examples from estuaries, coastal lagoons, beaches and tidal flat systems from all over the world. The rules and simple models can be used directly without relying on complex computations; much attention is given to the strengths and weaknesses of the underlying theories and their limits of applicability. The book is fully self-contained; some knowledge of basic physics and mathematics is recommended. The book is an upgrade of the first edition. Most parts are rewritten and chapters are added to incorporate research results, new insight and experience of the past ten years. This book is intended for everyone interested in coastal systems for professional or educational reasons.
This book unifies and enhances the accessibility of contemporary scholarly research on advances in coastal modeling. A comprehensive spectrum of innovative models addresses the wide diversity and multifaceted aspects of coastal research on the complex natural processes, dynamics, interactions and responses of the coastal supersystem and its associated subsystems. The twenty-one chapters, contributed by internationally recognized coastal experts from fourteen countries, provide invaluable insights on the recent advances and present state-of-the-art knowledge on coastal models which are essential for not only illuminating the governing coastal process and various characteristics, but also for understanding and predicting the dynamics at work in the coastal system. One of the unique strengths of the book is the impressive and encompassing presentation of current functional and operational coastal models for all those concerned with and interested in the modeling of seas, oceans and coasts. In addition to chapters modeling the dynamic natural processes of waves, currents, circulatory flows and sediment transport there are also chapters that focus on the modeling of beaches, shorelines, tidal basins and shore platforms. The substantial scope of the book is further strengthened with chapters concentrating on the effects of coastal structures on nearshore flows, coastal water quality, coastal pollution, coastal ecological modeling, statistical data modeling, and coupling of coastal models with geographical information systems.
Dynamics of Coastal Systems is about the dynamic interaction between water motion and seabed topography, which affects the natural response of coastal systems to change in external conditions and to human interventions — from the scale of seabed ripples up to the scale of entire barrier and delta systems. The book highlights major concepts developed during the past 50 years for the description of current-topography, tide-topography and wave-topography interactions. It provides simple analytical tools and models for diagnosing and predicting coastal response to change, with references to a great variety of coastal systems around the world. These concepts and tools are crucial for sustainable management of beaches, deltas and coastal wetlands.The book is based on a master course on coastal morphodynamics given at the Universities of Utrecht and Delft in The Netherlands for graduate students who are familiar with the basic concepts of coastal hydrodynamics. It enables coastal engineers to complete their background knowledge and to facilitate access to cutting-edge scientific literature on specific topics. The book may also serve to familiarise consultants, practitioners and academics in related coastal disciplines with modern concepts of land-sea interaction.
Process-based morphodynamic modelling is one of the relatively new tools at the disposal of coastal scientists, engineers and managers. On paper, it offers the possibility to analyse morphological processes and to investigate the effects of various measures one might consider to alleviate some problems. For these to be applied in practice, a model should be relatively straightforward to set up. It should be accurate enough to represent the details of interest, it should run long enough and robustly to see the real effects happen, and the physical processes represented in such a way that the sediment generally goes in the right direction at the right rate. Next, practitioners must be able to judge if the patterns and outcomes of the model are realistic and finally, translate these colour pictures and vector plots to integrated parameters that are relevant to the client or end user. In a nutshell, this book provides an in-depth review of ways to model coastal processes, including many hands-on exercises.
Laboratory physical models are a valuable tool for coastal engineers. Physical models help us to understand the complex hydrodynamic processes occurring in the nearshore zone and they provide reliable and economic engineering design solutions.This book is about the art and science of physical modeling as applied in coastal engineering. The aim of the book is to consolidate and synthesize into a single text much of the knowledge about physical modeling that has been developed worldwide.This book was written to serve as a graduate-level text for a course in physical modeling or as a reference text for engineers and researchers engaged in physical modeling and laboratory experimentation. The first three chapters serve as an introduction to similitude and physical models, covering topics such as advantages and disadvantages of physical models, systems of units, dimensional analysis, types of similitude and various hydraulic similitude criteria applicable to coastal engineering models.Practical application of similitude principles to coastal engineering studies is covered in Chapter 4 (Hydrodynamic Models), Chapter 5 (Coastal Structure Models) and Chapter 6 (Sediment Transport Models). These chapters develop the appropriate similitude criteria, discuss inherent laboratory and scale effects and overview the technical literature pertaining to these types of models. The final two chapters focus on the related subjects of laboratory wave generation (Chapter 7) and measurement and analysis techniques (Chapter 8).
"Provides an integrated approach to coastal dynamics and shoreline protection, aided by the use of specific case studies" -- Back cover.
A comprehensive introduction and reference prepared by the world's leading ocean wave modellers.