Download Free The Development Of Propulsion Technology For Us Space Launch Vehicles Book in PDF and EPUB Free Download. You can read online The Development Of Propulsion Technology For Us Space Launch Vehicles and write the review.

In this definitive study, J. D. Hunley traces the program’s development from Goddard’s early rockets (and the German V-2 missile) through the Titan IVA and the Space Shuttle, with a focus on space-launch vehicles. Since these rockets often evolved from early missiles, he pays considerable attention to missile technology, not as an end in itself, but as a contributor to launch-vehicle technology. Focusing especially on the engineering culture of the program, Hunley communicates this very human side of technological development by means of anecdotes, character sketches, and case studies of problems faced by rocket engineers. He shows how such a highly adaptive approach enabled the evolution of a hugely complicated technology that was impressive—but decidedly not rocket science. Unique in its single-volume coverage of the evolution of launch-vehicle technology from 1926 to 1991, this meticulously researched work will inform scholars and engineers interested in the history of technology and innovation, as well as those specializing in the history of space flight.
The key to opening the use of space to private enterprise and to broader public uses lies in reducing the cost of the transportation to space. More routine, affordable access to space will entail aircraft-like quick turnaround and reliable operations. Currently, the space Shuttle is the only reusable launch vehicle, and even parts of it are expendable while other parts require frequent and extensive refurbishment. NASA's highest priority new activity, the Reusable Launch Vehicle program, is directed toward developing technologies to enable a new generation of space launchers, perhaps but not necessarily with single stage to orbit capability. This book assesses whether the technology development, test and analysis programs in propulsion and materials-related technologies are properly constituted to provide the information required to support a December 1996 decision to build the X-33, a technology demonstrator vehicle; and suggest, as appropriate, necessary changes in these programs to ensure that they will support vehicle feasibility goals.
The National Aerospace Initiative (NAI) was conceived as a joint effort between the Department of Defense (DOD) and the National Aeronautics and Space Administration (NASA) to sustain the aerospace leadership of the United States through the acceleration of selected aerospace technologies: hypersonic flight, access to space, and space technologies. The Air Force became concerned about the NAI's possible consequences on Air Force programs and budget if NAI program decisions differed from Air Force priorities. To examine this issue, it asked the NRC for an independent review of the NAI. This report presents the results of that assessment. It focuses on three questions asked by the Air Force: is NAI technically feasible in the time frame laid out; is it financially feasible over that period; and is it operationally relevant.
Rocket and air-breathing propulsion systems are the foundation on which planning for future aerospace systems rests. A Review of United States Air Force and Department of Defense Aerospace Propulsion Needs assesses the existing technical base in these areas and examines the future Air Force capabilities the base will be expected to support. This report also defines gaps and recommends where future warfighter capabilities not yet fully defined could be met by current science and technology development plans.
On June 15, 2011, the Air Force Space Command established a new vision, mission, and set of goals to ensure continued U.S. dominance in space and cyberspace mission areas. Subsequently, and in coordination with the Air Force Research Laboratory, the Space and Missile Systems Center, and the 14th and 24th Air Forces, the Air Force Space Command identified four long-term science and technology (S&T) challenges critical to meeting these goals. One of these challenges is to provide full-spectrum launch capability at dramatically lower cost, and a reusable booster system (RBS) has been proposed as an approach to meet this challenge. The Air Force Space Command asked the Aeronautics and Space Engineering Board of the National Research Council to conduct an independent review and assessment of the RBS concept prior to considering a continuation of RBS-related activities within the Air Force Research Laboratory portfolio and before initiating a more extensive RBS development program. The committee for the Reusable Booster System: Review and Assessment was formed in response to that request and charged with reviewing and assessing the criteria and assumptions used in the current RBS plans, the cost model methodologies used to fame [frame?] the RBS business case, and the technical maturity and development plans of key elements critical to RBS implementation. The committee consisted of experts not connected with current RBS activities who have significant expertise in launch vehicle design and operation, research and technology development and implementation, space system operations, and cost analysis. The committee solicited and received input on the Air Force launch requirements, the baseline RBS concept, cost models and assessment, and technology readiness. The committee also received input from industry associated with RBS concept, industry independent of the RBS concept, and propulsion system providers which is summarized in Reusable Booster System: Review and Assessment.
If the United States hopes to continue as a leader in space, it must invest now in better earth-to-orbit technology by replacing obsolete launch facilities while also developing a new class of more robust and reliable vehicles. From Earth to Orbit provides strategies to reduce launch costs while increasing the reliability and resiliency of vehicles. It also recommends continued improvements for the Space Shuttle Orbiter and its subsystems and the development of a Space Transportation Main Engine (STME).
The revised edition of this practical, hands-on book discusses the launch vehicles in use today throughout the world, and includes the latest details on advanced systems being developed, such as electric and nuclear propulsion. The author covers the fundamentals, from the basic principles of rocket propulsion and vehicle dynamics through the theory and practice of liquid and solid propellant motors, to new and future developments. He provides a serious exposition of the principles and practice of rocket propulsion, from the point of view of the user who is not an engineering specialist.
For nearly fifty years, a wide range of missiles and rockets has propelled U.S. satellites and spacecraft into the sky. J. D. Hunley's two-volume work traces the evolution of this technology, from Robert Goddard's research in the 1920s through the development of the Titan missiles and launch vehicles in the 1960s to the refinement of the space shuttle in the 1980s. With the first book devoted primarily to military hardware and the second to launch vehicle hardware, Hunley offers a sweeping overview of these impressive engineering innovations as well as insights into the dynamic personalities responsible for them. Together, the two volumes offer a unique, invaluable history of rocketry that should appeal to a wide range of scholars and space buffs.
This is a new release of the original 1960 edition.
An understandable perspective on the types of space propulsion systems necessary to enable low-cost space flights to Earth orbit and to the Moon and the future developments necessary for exploration of the solar system and beyond to the stars.