Download Free The Development Of Biological Systematics Book in PDF and EPUB Free Download. You can read online The Development Of Biological Systematics and write the review.

A reevaluation of the history of biological systematics that discusses the formative years of the so-called natural system of classification in the eighteenth and nineteenth centuries. Shows how classifications came to be treated as conventions; systematic practice was not linked to clearly articulated theory; there was general confusion over the "shape" of nature; botany, elements of natural history, and systematics were conflated; and systematics took a position near the bottom of the hierarchy of sciences.
Biological Systematics: Principles and Applications draws equally from examples in botany and zoology to provide a modern account of cladistic principles and techniques. It is a core systematics textbook with a focus on parsimony-based approaches for students and biologists interested in systematics and comparative biology. Randall T. Schuh and Andrew V. Z. Brower cover: -the history and philosophy of systematics and nomenclature; -the mechanics and methods of analysis and evaluation of results; -the practical applications of results and wider relevance within biological classification, biogeography, adaptation and coevolution, biodiversity, and conservation; and -software applications. This new and thoroughly revised edition reflects the exponential growth in the use of DNA sequence data in systematics. New data techniques and a notable increase in the number of examples from molecular systematics will be of interest to students increasingly involved in molecular and genetic work.
The Evolution of Phylogenetic Systematics aims to make sense of the rise of phylogenetic systematics—its methods, its objects of study, and its theoretical foundations—with contributions from historians, philosophers, and biologists. This volume articulates an intellectual agenda for the study of systematics and taxonomy in a way that connects classification with larger historical themes in the biological sciences, including morphology, experimental and observational approaches, evolution, biogeography, debates over form and function, character transformation, development, and biodiversity. It aims to provide frameworks for answering the question: how did systematics become phylogenetic?
Frank E. Zachos offers a comprehensive review of one of today’s most important and contentious issues in biology: the species problem. After setting the stage with key background information on the topic, the book provides a brief history of species concepts from antiquity to the Modern Synthesis, followed by a discussion of the ontological status of species with a focus on the individuality thesis and potential means of reconciling it with other philosophical approaches. More than 30 different species concepts found in the literature are presented in an annotated list, and the most important ones, including the Biological, Genetic, Evolutionary and different versions of the Phylogenetic Species Concept, are discussed in more detail. Specific questions addressed include the problem of asexual and prokaryotic species, intraspecific categories like subspecies and Evolutionarily Significant Units, and a potential solution to the species problem based on a hierarchical approach that distinguishes between ontological and operational species concepts. A full chapter is dedicated to the challenge of delimiting species by means of a discrete taxonomy in a continuous world of inherently fuzzy boundaries. Further, the book outlines the practical ramifications for ecology and evolutionary biology of how we define the species category, highlighting the danger of an apples and oranges problem if what we subsume under the same name (“species”) is in actuality a variety of different entities. A succinct summary chapter, glossary and annotated list of references round out the coverage, making the book essential reading for all biologists looking for an accessible introduction to the historical, philosophical and practical dimensions of the species problem.
Evolution.
In this comprehensive work, John S. Wilkins traces the history of the idea of "species" from antiquity to today, providing a new perspective on the relationship between philosophical and biological approaches.--[book cover].
In December 2004, the National Academy of Sciences sponsored a colloquium on "Systematics and the Origin of Species" to celebrate Ernst Mayr's 100th anniversary and to explore current knowledge concerning the origin of species. In 1942, Ernst Mayr, one of the twentieth century's greatest scientists, published Systematics and the Origin of Species, a seminal book of the modern theory of evolution, where he advanced the significance of population variation in the understanding of evolutionary process and the origin of new species. Mayr formulated the transition from Linnaeus's static species concept to the dynamic species concept of the modern theory of evolution and emphasized the species as a community of populations, the role of reproductive isolation, and the ecological interactions between species. In addition to a preceding essay by Edward O. Wilson, this book includes the 16 papers presented by distinguished evolutionists at the colloquium. The papers are organized into sections covering the origins of species barriers, the processes of species divergence, the nature of species, the meaning of "species," and genomic approaches for understanding diversity and speciation.
A brilliant young scientist introduces us to the fascinating field that is changing our understanding of how the body works and the way we can approach healing. SYSTEMATIC is the first book to introduce general readers to systems biology, which is improving medical treatments and our understanding of living things. In traditional bottom-up biology, a biologist might spend years studying how a single protein works, but systems biology studies how networks of those proteins work together--how they promote health and how to remedy the situation when the system isn't functioning properly. Breakthroughs in systems biology became possible only when powerful computer technology enabled researchers to process massive amounts of data to study complete systems, and has led to progress in the study of gene regulation and inheritance, cancer drugs personalized to an individual's genetically unique tumor, insights into how the brain works, and the discovery that the bacteria and other microbes that live in the gut may drive malnutrition and obesity. Systems biology is allowing us to understand more complex phenomena than ever before. In accessible prose, SYSTEMATIC sheds light not only on how systems within the body work, but also on how research is yielding new kinds of remedies that enhance and harness the body's own defenses.
Phylogenetic Systematics: Haeckel to Hennig traces the development of phylogenetic systematics against the foil of idealistic morphology through 100 years of German biology. It starts with the iconic Ernst Haeckel-the German Darwin from Jena-and the evolutionary morphology he developed. It ends with Willi Hennig, the founder of modern phylogenetic
Phylogenetic Systematics, first published in 1966, marks a turning point in the history of systematic biology. Willi Hennig's influential synthetic work, arguing for the primacy of the phylogenetic system as the general reference system in biology, generated significant controversy and opened possibilities for evolutionary biology that are still being explored.