Download Free The Design And Synthesis Of Carbon Molecular Sieve Catalysts For Shape Selective Catalysis Book in PDF and EPUB Free Download. You can read online The Design And Synthesis Of Carbon Molecular Sieve Catalysts For Shape Selective Catalysis and write the review.

Widely used in adsorption, catalysis and ion exchange, the family of molecular sieves such as zeolites has been greatly extended and many advances have recently been achieved in the field of molecular sieves synthesis and related porous materials. Chemistry of Zeolites and Related Porous Materials focuses on the synthetic and structural chemistry of the major types of molecular sieves. It offers a systematic introduction to and an in-depth discussion of microporous, mesoporous, and macroporous materials and also includes metal-organic frameworks. Provides focused coverage of the key aspects of molecular sieves Features two frontier subjects: molecular engineering and host-guest advanced materials Comprehensively covers both theory and application with particular emphasis on industrial uses This book is essential reading for researches in the chemical and materials industries and research institutions. The book is also indispensable for researches and engineers in R&D (for catalysis) divisions of companies in petroleum refining and the petrochemical and fine chemical industries.
Authored by a top-level team of both academic and industrial researchers in the field, this is an up-to-date review of mesoporous zeolites. The leading experts cover novel preparation methods that allow for a purpose-oriented fine-tuning of zeolite properties, as well as the related materials, discussing the specific characterization methods and the applications in close relation to each individual preparation approach. The result is a self-contained treatment of the different classes of mesoporous zeolites. With its academic insights and practical relevance this is a comprehensive handbook for researchers in the field and related areas, as well as for developers from the chemical industry.
From the symposium on Advances in Zeolites and Pillared Clays Synthesis, sponsored by the Petroleum Chemistry Division of the American Chemical Society experts from around the world review: You'll find everything you've ever wanted to know about zeolites and pillared clays: For the novice - how to information on zeolite synthesis. For the expert - a survey of advances in novel zeolites. The mechanism of zeolite crystallisation and crystal growth; spectroscopic characterization of reactants and reaction intermediates; chemistry of silicate solution and reaction effects on crystallization products; the role of organic additives in zeolite formation; novel synthesis methods and procedures for zeolites and pillared clays preparation; new pillaring agents and pillared products; delaminated clays.
Nanostructured materials with tailored properties are regarded as a fundamental element in the development of future science and technology. Research is still ongoing into the nanosized construction elements required to create functional solids. The recently developed technique, nanocasting, has great advantage over others in terms of the synthesis of special nanostructured materials by the careful choice of suitable elements and nanoengineering steps. This new book summarizes the recent developments in nanocasting, including the principles of nanocasting, syntheses of novel nanostructured materials, characterization methods, detailed synthetic recipes and further possible development in this area. The book focuses on the synthesis of porous solids from the viewpoint of methodology and introduces the science of nanocasting from fundamental principles to their use in synthesis of various materials. It starts by outlining the principles of nanocasting, requirements to the templates and precursors and the tools needed to probe matter at the nanoscale level. It describes how to synthesize nano structured porous solids with defined characteristics and finally discusses the functionalization and application of porous solids. Special attention is given to new developments in this field and future perspectives. A useful appendix covering the detailed synthetic recipes of various templates including porous silica, porous carbon and colloidal spheres is included which will be invaluable to researchers wanting to follow and reproduce nanocast materials. Topics covered in the book include: * inorganic chemistry * organic chemistry * solution chemistry * sol-gel and interface science * acid-base equilibria * electrochemistry * biochemistry * confined synthesis The book gives readers not only an overview of nanocasting technology, but also sufficient information and knowledge for those wanting to prepare various nanostructured materials without needing to search the available literature.
A guide to current and potential industrial applications of shape selective zeolite catalysis. A manual for workers in the field--and a bridge of technology transfer among various industries--this reference explains the fundamentals of zeolite catalysis, and describes the relation between catalyst structure and catalytic activity, and methods of achieving molecular shape selectivity. Includes chemical reactions using shape selective catalysts, and industrial processes using shape selective zeolites. Potential applications of the technology are in areas such as oil production, shale oil, coal, natural gas, internal combustion engine modification, biomass conversion, and the fermentation, chemical, and waste recovery industries. Annotation(c) 2003 Book News, Inc., Portland, OR (booknews.com)
Catalysis is central to the chemical industry, as it is directly or involved in the production of almost all useful chemical products. In this book the authors, present the definitive account of industrial catalytic processes. Throughout Fundamentals of Industrial Catalytic Processes the information is illustrated with many case studies and problems. This book is valuable to anyone wanting a clear account of industrial catalytic processes, but is particularly useful to industrial and academic chemists and engineers and graduate working on catalysis. This book also: Covers fundamentals of catalytic processes, including chemistry, catalyst preparation, properties and reaction engineering. Addresses heterogeneous catalytic processes employed by industry. Provides detailed data on existing catalysts and catalytic reactions, process design and chemical engineering. Covers catalysts used in fuel cells.
Zeolite synthesis is an active field of research. As long as this continues, new phases will be discovered and new techniques for preparing existing phases will appear. This edition of Verified Synthesis of Zeolitic Materials contains all the recipes from the first edition plus 24 new recipes. Five new introductory articles have been included plus those from the first edition, some of which have been substantially revised. The XRD patterns have been recorded using different instrument settings from those in the first edition and are intended to conform to typical X-ray diffraction practice. In most cases, only the XRD pattern for the productas synthesised is printed here. The exceptions are those phases which show marked changes in the XRD pattern upon calcination.
Porous materials are of scientific and technological importance because of the presence of voids of controllable dimensions at the atomic, molecular, and nanometer scales, enabling them to discriminate and interact with molecules and clusters. Interestingly the big deal about this class of materials is about the “nothingness” within — the pore space. International Union of Pure and Applied Chemistry (IUPAC) classifies porous materials into three categories — micropores of less than 2 nm in diameter, mesopores between 2 and 50 nm, and macropores of greater than 50 nm. In this book, nanoporous materials are defined as those porous materials with pore diameters less than 100 nm.Over the last decade, there has been an ever increasing interest and research effort in the synthesis, characterization, functionalization, molecular modeling and design of nanoporous materials. The main challenges in research include the fundamental understanding of structure-property relations and tailor-design of nanostructures for specific properties and applications. Research efforts in this field have been driven by the rapid growing emerging applications such as biosensor, drug delivery, gas separation, energy storage and fuel cell technology, nanocatalysis and photonics. These applications offer exciting new opportunities for scientists to develop new strategies and techniques for the synthesis and applications of these materials.This book provides a series of systematic reviews of the recent developments in nanoporous materials. It covers the following topics: (1) synthesis, processing, characterization and property evaluation; (2) functionalization by physical and/or chemical treatments; (3) experimental and computational studies on fundamental properties, such as catalytic effects, transport and adsorption, molecular sieving and biosorption; (4) applications, including photonic devices, catalysis, environmental pollution control, biological molecules separation and isolation, sensors, membranes, hydrogen and energy storage, etc./a
Ultrathin metal oxide layers have emerged in recent years as a powerful approach for substantially enhancing the performance of photo, electro, or thermal catalytic systems for energy, in some cases even enabling the use of highly attractive materials previously found unsuitable. This development is due to the confluence of new synthetic preparation methods for ultrathin oxide layers and a more advanced understanding of interfacial phenomena on the nano and atomic scale. This book brings together the fundamentals and applications of ultrathin oxide layers while highlighting connections and future opportunities with the intent of accelerating the use of these materials and techniques for new and emerging applications of catalysis for energy. It comprehensively covers the state-of-the-art synthetic methods of ultrathin oxide layers, their structural and functional characterization, and the broad range of applications in the field of catalysis for energy. Edited by leaders in the field, and with contributions from global experts, this title will be of interest to graduate students and researchers across materials science and chemistry who are interested in ultrathin oxide layers and their applications in solar energy conversion, renewable energy, photocatalysis, electrocatalysis and protective coatings.