Download Free The Design And Analysis Of Vlsi Circuits Book in PDF and EPUB Free Download. You can read online The Design And Analysis Of Vlsi Circuits and write the review.

This monograph is motivated by the challenges faced in designing reliable VLSI systems in modern VLSI processes. The reliable operation of integrated circuits (ICs) has become increasingly dif?cult to achieve in the deep submicron (DSM) era. With continuouslydecreasing device feature sizes, combinedwith lower supply voltages and higher operating frequencies, the noise immunity of VLSI circuits is decreasing alarmingly. Thus, VLSI circuits are becoming more vulnerable to noise effects such as crosstalk, power supply variations, and radiation-inducedsoft errors. Among these noise sources, soft errors(or error caused by radiation particle strikes) have become an increasingly troublesome issue for memory arrays as well as c- binational logic circuits. Also, in the DSM era, process variations are increasing at a signi?cant rate, making it more dif?cult to design reliable VLSI circuits. Hence, it is important to ef?ciently design robust VLSI circuits that are resilient to radiation particle strikes and process variations. The work presented in this research mo- graph presents several analysis and design techniques with the goal of realizing VLSI circuits, which are radiation and process variation tolerant.
An introduction to the design of analog VLSI circuits. Neuromorphic engineers work to improve the performance of artificial systems through the development of chips and systems that process information collectively using primarily analog circuits. This book presents the central concepts required for the creative and successful design of analog VLSI circuits. The discussion is weighted toward novel circuits that emulate natural signal processing. Unlike most circuits in commercial or industrial applications, these circuits operate mainly in the subthreshold or weak inversion region. Moreover, their functionality is not limited to linear operations, but also encompasses many interesting nonlinear operations similar to those occurring in natural systems. Topics include device physics, linear and nonlinear circuit forms, translinear circuits, photodetectors, floating-gate devices, noise analysis, and process technology.
The third edition of Hodges and Jackson’s Analysis and Design of Digital Integrated Circuits has been thoroughly revised and updated by a new co-author, Resve Saleh of the University of British Columbia. The new edition combines the approachability and concise nature of the Hodges and Jackson classic with a complete overhaul to bring the book into the 21st century. The new edition has replaced the emphasis on BiPolar with an emphasis on CMOS. The outdated MOS transistor model used throughout the book will be replaced with the now standard deep submicron model. The material on memory has been expanded and updated. As well the book now includes more on SPICE simulation and new problems that reflect recent technologies. The emphasis of the book is on design, but it does not neglect analysis and has as a goal to provide enough information so that a student can carry out analysis as well as be able to design a circuit. This book provides an excellent and balanced introduction to digital circuit design for both students and professionals.
This book is intended for readers who are interested in the design of robust and reliable electronic digital systems. The authors cover emerging trends in design of today’s reliable electronic systems which are applicable to safety-critical applications, such as automotive or healthcare electronic systems. The emphasis is on modeling approaches and algorithms for analysis and mitigation of soft errors in nano-scale CMOS digital circuits, using techniques that are the cornerstone of Computer Aided Design (CAD) of reliable VLSI circuits. The authors introduce software tools for analysis and mitigation of soft errors in electronic systems, which can be integrated easily with design flows. In addition to discussing soft error aware analysis techniques for combinational logic, the authors also describe new soft error mitigation strategies targeting commercial digital circuits. Coverage includes novel Soft Error Rate (SER) analysis techniques such as process variation aware SER estimation and GPU accelerated SER analysis techniques, in addition to SER reduction methods such as gate sizing and logic restructuring based SER techniques.
Exponential improvement in functionality and performance of digital integrated circuits has revolutionized the way we live and work. The continued scaling down of MOS transistors has broadened the scope of use for circuit technology to the point that texts on the topic are generally lacking after a few years. The second edition of Digital Integrated Circuits: Analysis and Design focuses on timeless principles with a modern interdisciplinary view that will serve integrated circuits engineers from all disciplines for years to come. Providing a revised instructional reference for engineers involved with Very Large Scale Integrated Circuit design and fabrication, this book delves into the dramatic advances in the field, including new applications and changes in the physics of operation made possible by relentless miniaturization. This book was conceived in the versatile spirit of the field to bridge a void that had existed between books on transistor electronics and those covering VLSI design and fabrication as a separate topic. Like the first edition, this volume is a crucial link for integrated circuit engineers and those studying the field, supplying the cross-disciplinary connections they require for guidance in more advanced work. For pedagogical reasons, the author uses SPICE level 1 computer simulation models but introduces BSIM models that are indispensable for VLSI design. This enables users to develop a strong and intuitive sense of device and circuit design by drawing direct connections between the hand analysis and the SPICE models. With four new chapters, more than 200 new illustrations, numerous worked examples, case studies, and support provided on a dynamic website, this text significantly expands concepts presented in the first edition.
This book was written to arm engineers qualified and knowledgeable in the area of VLSI circuits with the essential knowledge they need to get into this exciting field and to help those already in it achieve a higher level of proficiency. Few people truly understand how a large chip is developed, but an understanding of the whole process is necessary to appreciate the importance of each part of it and to understand the process from concept to silicon. It will teach readers how to become better engineers through a practical approach of diagnosing and attacking real-world problems.
The fourth edition of CMOS Digital Integrated Circuits: Analysis and Design continues the well-established tradition of the earlier editions by offering the most comprehensive coverage of digital CMOS circuit design, as well as addressing state-of-the-art technology issues highlighted by the widespread use of nanometer-scale CMOS technologies. In this latest edition, virtually all chapters have been re-written, the transistor model equations and device parameters have been revised to reflect the sigificant changes that must be taken into account for new technology generations, and the material has been reinforced with up-to-date examples. The broad-ranging coverage of this textbook starts with the fundamentals of CMOS process technology, and continues with MOS transistor models, basic CMOS gates, interconnect effects, dynamic circuits, memory circuits, arithmetic building blocks, clock and I/O circuits, low power design techniques, design for manufacturability and design for testability.
Covers the statistical analysis and optimization issues arising due to increased process variations in current technologies. Comprises a valuable reference for statistical analysis and optimization techniques in current and future VLSI design for CAD-Tool developers and for researchers interested in starting work in this very active area of research. Written by author who lead much research in this area who provide novel ideas and approaches to handle the addressed issues
Microelectronics are certainly one of the key-technologies of our time. They are a key factor of technological and economic progress. They effect the fields of automation, information and communication, leading to the development of new applications and markets. Attention should be focused on three areas of development: • process and production technology, • test technology, • design technology. Clearly, because of the development of new application fields, the skill ~f design ing integrated circuits should not be limited to a few, highly specialized experts Rather, this ability should be made available to all system aDd design engineers as a new application technology - just like nrogramrning technology for software. For this reason, design procedures havt: to be developed which, supported by appropriate CAD systems, provide the desIgn englIl~I' with tools for representaltop effective instruments for design and reliable ·tools for verificatibn, ensuring simpre, proper and easily controllable interfaces for the manufacturing and test processes. Such CAD systems are called standard design systems. They open the way to fast and safe design of integrated circuits. First, this book demonstrates basic principles with an example of the Siemens design system VENUS, gives a general introduction to the method of designing integrated circuits, familiarizes the reader with basic semiconductor and circuit tech nologies, shows the various methods of layout design, and presents necessary con cepts and strategies of test technology.