Download Free The Concise Handbook Of Algebra Book in PDF and EPUB Free Download. You can read online The Concise Handbook Of Algebra and write the review.

It is by no means clear what comprises the "heart" or "core" of algebra, the part of algebra which every algebraist should know. Hence we feel that a book on "our heart" might be useful. We have tried to catch this heart in a collection of about 150 short sections, written by leading algebraists in these areas. These sections are organized in 9 chapters A, B, . . . , I. Of course, the selection is partly based on personal preferences, and we ask you for your understanding if some selections do not meet your taste (for unknown reasons, we only had problems in the chapter "Groups" to get enough articles in time). We hope that this book sets up a standard of what all algebraists are supposed to know in "their" chapters; interested people from other areas should be able to get a quick idea about the area. So the target group consists of anyone interested in algebra, from graduate students to established researchers, including those who want to obtain a quick overview or a better understanding of our selected topics. The prerequisites are something like the contents of standard textbooks on higher algebra. This book should also enable the reader to read the "big" Handbook (Hazewinkel 1999-) and other handbooks. In case of multiple authors, the authors are listed alphabetically; so their order has nothing to do with the amounts of their contributions.
A Concise Handbook of Mathematics, Physics, and Engineering Sciences takes a practical approach to the basic notions, formulas, equations, problems, theorems, methods, and laws that most frequently occur in scientific and engineering applications and university education. The authors pay special attention to issues that many engineers and students
Concise Handbook of Mathematics and Physics presents a unified and coherent treatment of all the major aspects of modern elementary physics and mathematics. This complete text/reference includes definitions of fundamental notations and physical and mathematical quantities, formulas that express the laws of physics, axioms and theorems of mathematics, and more. The information is organized logically (instead of alphabetically) for better comprehension and quick, convenient access. The book contains extensive cross-referencing between the mathematical and physical sections. reflecting the considerable overlap between these two areas of study and increasing the usefulness of this handbook. Fundamental concepts, theorems, and laws are demonstrated through numerous practical examples and tasks to help build problem-solving skills.
Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.
Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
Covering the main fields of mathematics, this handbook focuses on the methods used for obtaining solutions of various classes of mathematical equations that underlie the mathematical modeling of numerous phenomena and processes in science and technology. The authors describe formulas, methods, equations, and solutions that are frequently used in scientific and engineering applications and present classical as well as newer solution methods for various mathematical equations. The book supplies numerous examples, graphs, figures, and diagrams and contains many results in tabular form, including finite sums and series and exact solutions of differential, integral, and functional equations.
This Handbook gives a comprehensive snapshot of a field at the intersection of mathematics and computer science with applications in physics, engineering and education. Reviews 67 software systems and offers 100 pages on applications in physics, mathematics, computer science, engineering chemistry and education.
This guide book to mathematics contains in handbook form the fundamental working knowledge of mathematics which is needed as an everyday guide for working scientists and engineers, as well as for students. Easy to understand, and convenient to use, this guide book gives concisely the information necessary to evaluate most problems which occur in concrete applications.
The Oxford Users' Guide to Mathematics is one of the leading handbooks on mathematics available. It presents a comprehensive modern picture of mathematics and emphasises the relations between the different branches of mathematics, and the applications of mathematics in engineering and the natural sciences. The Oxford User's Guide covers a broad spectrum of mathematics starting with the basic material and progressing on to more advanced topics that have come to the fore in the last few decades. The book is organised into mathematical sub-disciplines including analysis, algebra, geometry, foundations of mathematics, calculus of variations and optimisation, theory of probability and mathematical statistics, numerical mathematics and scientific computing, and history of mathematics. The book is supplemented by numerous tables on infinite series, special functions, integrals, integral transformations, mathematical statistics, and fundamental constants in physics. It also includes a comprehensive bibliography of key contemporary literature as well as an extensive glossary and index. The wealth of material, reaching across all levels and numerous sub-disciplines, makes The Oxford User's Guide to Mathematics an invaluable reference source for students of engineering, mathematics, computer science, and the natural sciences, as well as teachers, practitioners, and researchers in industry and academia.