Download Free The Computer Simulation Of Composite Ion Implantation Profiles Book in PDF and EPUB Free Download. You can read online The Computer Simulation Of Composite Ion Implantation Profiles and write the review.

During the past ten years the use of ion implantation for doping semiconductors has become an active area of research and new device development. This doping technique has recently reached a level of maturity such that it is an integral step in the manu facturing of discrete semiconductor devices and integrated circuits. Ion implantation has significant advantages over diffusion such as: precision, purity, versatility, and automation; all of which are important for VLSI purposes. Ion implantation has also found new applications in magnetic bubble domain materials, superconductors, and materials synthesis. This book is a comprehensive bibliography of 2467 references of the world's literature on ion implantation as applied to micro electronics. This compilation will easily enable researchers to compare their work with that of others. For easy access to the needed references, the contents are divided into fifty-two subject headings. The main categories are: bibliographies, books and symposia, review articles, theory, materials, device applications, and equipment. An author index and a subject index are also given to provide easy access to the references. The literature from January 1976 to December 1980 is covered. The literature prior to 1976 is the subject, in part, of a previous book by the author (1). The main sources searched were: Physics Abstracts (PA) , Electrical and Electronics Abstracts (EEA) , Chemical Abstracts (CA) , Nuclear Science Abstracts (NSA) , and Engineering Index. The volumes and numbers of the abstracts are given to pro vide access to the abstracts.
129 3.6 Exercises 130 3.7 References. 131 4 PN Junctions 131 4.1 Introduction. 132 4.2 Carrier Densities: Equilibrium Case 4.3 Non-Equilibrium .......... . 139 4.4 Carrier Transport and Conservation 144 4.5 The pn Junction - Equilibrium Conditions. 147 155 4.6 The pn Junction - Non-equilibrium. 4.7 SEDAN Analysis . . . . . . . . . . . . . 166 4.7.1 Heavy Doping Effects ..... . 176 4.7.2 Analysis of High-Level Injection 181 190 4.7.3 Technology-Dependent Device Effects 4.8 Summary 193 4.9 Exercises 193 194 4.10 References. 5 MOS Structures 197 5.1 Introduction ............. . 197 5.2 The MOS Capacitor ........ . 198 5.3 Basic MOSFET I-V Characteristics. 208 5.4 Threshold Voltage in Nonuniform Substrate 217 5.5 MOS Device Design by Simulation . . . . . 224 5.5.1 Body-bias Sensitivity of Threshold Voltage 225 5.5.2 Two-region Model . . . . . . . . 231 5.5.3 MOSFET Design by Simulation. 234 5.6 Summary 240 5.7 Exercises 240 5.8 References. 242 6 Bipolar Transistors 243 6.1 Introduction ... 243 6.2 Lateral pnp Transistor Operation 245 6.3 Transport Current Analysis ... 252 6.4 Generalized Charge Storage Model 260 6.,1) Transistor Equivalent Circuits. 267 6.5.1 Charge Control Model ...
The aim of these proceedings is to present and stimulate discussion on the many subjects related to ion implantation among a broad mix of specialists from areas as diverse as materials science, device production and advanced ion implanters.The contents open with a paper on the future developments of the microelectronics industry in Europe within the framework of the global competition. The subsequent invited and oral presentations cover in detail the following areas: trends in processing and devices, ion-solid interaction, materials science issues, advanced implanter systms, process control and yield, future trends and applications.
This Springer Handbook comprehensively covers the topic of semiconductor devices, embracing all aspects from theoretical background to fabrication, modeling, and applications. Nearly 100 leading scientists from industry and academia were selected to write the handbook's chapters, which were conceived for professionals and practitioners, material scientists, physicists and electrical engineers working at universities, industrial R&D, and manufacturers. Starting from the description of the relevant technological aspects and fabrication steps, the handbook proceeds with a section fully devoted to the main conventional semiconductor devices like, e.g., bipolar transistors and MOS capacitors and transistors, used in the production of the standard integrated circuits, and the corresponding physical models. In the subsequent chapters, the scaling issues of the semiconductor-device technology are addressed, followed by the description of novel concept-based semiconductor devices. The last section illustrates the numerical simulation methods ranging from the fabrication processes to the device performances. Each chapter is self-contained, and refers to related topics treated in other chapters when necessary, so that the reader interested in a specific subject can easily identify a personal reading path through the vast contents of the handbook.