Download Free The Chemistry Of Nonaqueous Solvents V4 Book in PDF and EPUB Free Download. You can read online The Chemistry Of Nonaqueous Solvents V4 and write the review.

The Chemistry of Nonaqueous Solvents, Volume IV: Solution Phenomena and Aprotic Solvents focuses on the chemistry of nonaqueous solvents, with emphasis on solution phenomena and aprotic solvents such as tetramethylurea, inorganic acid chlorides, cyclic carbonates, and sulfolane. This book is organized into seven chapters and begins with an overview of the theory of electrical conductivity and elementary experimental considerations, along with some of the interesting research on nonaqueous solvents. It then turns to a discussion on hydrogen bonding phenomena in nonaqueous systems as probed by four spectroscopic techniques; the different methods used in studying redox systems in nonaqueous solvents such as potentiometry and steady state diffusion methods; and the use of tetramethylurea as a nonaqueous medium for chemical reactions and chemical investigations. The reader is also introduced to inorganic acid chlorides of high dielectric constant, with special reference to antimony trichloride, and preparation methods for cyclic carbonates including vinylene carbonate, ethylene carbonate, propylene carbonate, and butylene carbonate. The book concludes with a chapter on sulfolane, focusing on its preparation and purification, physical properties, and toxicology. This book will be of interest to chemists who want to know more about nonaqueous solvents.
An excellent resource for all graduate students and researchers using electrochemical techniques. After introducing the reader to the fundamentals, the book focuses on the latest developments in the techniques and applications in this field. This second edition contains new material on environmentally-friendly solvents, such as room-temperature ionic liquids.
Solvents other than water are used in chemical analysis, chemical manufacturing, and in specialized syntheses. This book covers the principles and uses of non-aqueous solvents at a level suitable for first or second-year undergraduates. The book first discusses the general properties of solvents, and introduces the necessary concepts for making rational choices of solvents for different applications. There is a discussion of the various chemical interactions between solvents and the substances dissolved in them, and how solvents change the course of reactions. The chemistry of 16 common solvents is discussed, emphasizing the advantages and disadvantages of each. The book concludes with an account of the chemistry of molten salts and discusses the use of low melting temperature compounds as synthetic media. The book expands on the brief treatment of non-aqueous solvents given in many textbooks while avoiding the complexities introduced in research treatises. It is the only book currently available that provides an in-depth treatment accessible to undergraduates.
Solvation, Ionic and Complex Formation Reactions in Non-Aqueous Solvents: Experimental Methods for their Investigation presents the available methods and their particular value in investigating solutions composed of non-aqueous solvents. This book is composed of 10 chapters and begins with a brief description of the complexity of the interactions possible n solutions. The subsequent chapters deal with a classification of the solvents and empirical solvent strength scales based on various experimental parameters, together with various correlations empirically describing the solvent effect. Other chapters present the methods for the purification of solvents and ways of checking their purity, as well as the individual results achieved during investigations of the solvent effect, particularly the general regularities recognized. The remaining chapters provide a review of the coordination chemistry of non-aqueous solutions. This book will prove useful to analytical and inorganic chemists.
This book seeks to enhance our understanding of acids and bases by reviewing and analysing their behaviour in non-aqueous solvents. The behaviour is related where possible to that in water, but correlations and contrasts between solvents are also presented.
We believe this to be the first monograph devoted to the physicochemical properties of solutions in organic solvent systems. Although there have 1 been a number of books on the subject of non-aqueous solvents - 4, they have been devoted, almost entirely, to inorganic solvents such as liquid ammonia, liquid sulphur dioxide, etc. A variety of new solvents such as dimethylformamide, dimethylsulphoxide and propylene carbonate have become commercially available over the last twenty years. Solutions in these solvents are of technological interest in connection with novel battery systems and chemical synthesis, while studies of ion solvation and transport properties have fostered academic interest. This monograph is primarily concerned with electrolytic solutions although discussion of non-electrolyte solutions has not been excluded. We have deliberately omitted consideration of the important area of solvent extraction, since this has been adequately covered elsewhere. Our contributors were asked to review and discuss their respective areas with particular reference to differences in technique necessitated by use of non-aqueous solvents while not reiterating facts well-known from experience with aqueous solutions. We have striven to build their contributions into a coherent and consistent whole. We thank our con tributors for following our suggestions so ably and for their forebearance in the face of our editorial impositions.
The Chemistry of Nonaqueous Solvents, Volume V-A: Principles and Basic Solvents provides the theoretical aspects of nonaqueous solution chemistry independent of solvent and information on individual solvent systems. This volume contains chapters on solvation and complex formation in protic and aprotic solvents; solvent basicity; ion-selective electrodes in nonaqueous solvents; nonaqueous solvents in organic electroanalytical chemistry; and anhydrous hydrazine and water-hydrazine mixtures. Chemists, researchers, and students of chemistry and chemical engineering will find the book a good reference material.
The Chemistry of Nonaqueous Solvents, Volume V: Acidic and Aprotic Solvents, Part B covers the theoretical aspects of individual solvents in nonaqueous solution chemistry. This volume is divided into five chapters. The first two chapters discuss the purification, structure, physical properties, electrochemistry, solubilities, and reactions of specific solvents, including trifluoroacetic and halosulfuric acids. Chapter 3 deals briefly with the preparations and properties of the interhalogens, principally in the liquid state. This chapter emphasizes their uses as nonaqueous solvents, especially through extensive study of their acid-base reactions. Spectroscopic data and their contribution to the understanding of their solution chemistries are also considered. Chapter 4 surveys the autoionization, purification methods, solubilities, solvolytic reactions, conductivity, conductometric, potentiometric, spectrophotometric, and visual titrations, as well as the isolation of solid complexes in inorganic halides and oxyhalides. Chapter 5 describes the solubility, reactivity, and spectroscopic data of molten salts. This book is of value to analytical chemists, and analytical chemistry teachers and students.
Metal Oxide Nanoparticles in Organic Solvents discusses recent advances in the chemistry involved for the controlled synthesis and assembly of metal oxide nanoparticles, the characterizations required by such nanoobjects, and their size and shape depending properties. In the last few years, a valuable alternative to the well-known aqueous sol-gel processes was developed in the form of nonaqueous solution routes. Metal Oxide Nanoparticles in Organic Solvents reviews and compares surfactant- and solvent-controlled routes, as well as providing an overview of techniques for the characterization of metal oxide nanoparticles, crystallization pathways, the physical properties of metal oxide nanoparticles, their applications in diverse fields of technology, and their assembly into larger nano- and mesostructures. Researchers and postgraduates in the fields of nanomaterials and sol-gel chemistry will appreciate this book’s informative approach to chemical formation mechanisms in relation to metal oxides.