Download Free The Blue Laser Diode Book in PDF and EPUB Free Download. You can read online The Blue Laser Diode and write the review.

From the reviews of the first edition: "The technical chapters will be lapped up by semiconductor specialists keen to know more [...] the book includes fascinating material that answers the question: why did Nakamura succeed where many, much larger, research groups failed." New Scientist
In 1993, the author, Shuji Nakamura developed the first commercially available blue and green light-emitting diodes. Now he has made the most important breakthrough in solid state laser techniques to date - the first blue semiconductor laser based on GaN. Here, Dr. Nakamura discusses the physical concept and basic manufacturing technology of these new blue light-emitting and laser diodes. he shows how this represents a new era in commercial applications for semiconductors, including displays, road and railway signalling, lighting, scanners, optical data storage, and much more. Moreover, Nakamura provides fascinating background information on the extraordinary realisation of an extremely successful concept of research and development. Of interest to researchers as well as engineers.
The "blue laser" is an exciting new device used in physics. The potential is now being recognized for its development into a commercial lighting system using about a tenth of the power and with a thousand times the operating lifetime of a comparable conventional system. This comprehensive work introduces the subject at a level suitable for graduate students. It covers the basics physics of light emitting diodes (LEDs) and laser diodes (LDs) based on gallium nitride and related nitride semiconductors, and gives an outline of their structural, transport and optical properties, and the relevant device physics. It begins with the fundamentals, and covers both theory and experiment, as well as an examination of actual and potential device applications. Shuji Nakamura and Nichia Chemicals Industries made the initial breakthroughs in the field, and these have revealed that LEDs and LDs are a sophisticated physical phenomenon and a commercial reality.
Laser diodes represent a key element in the emerging field of opto electronics which includes, for example, optical communication, optical sensors or optical disc systems. For all these applications, information is either transmitted, stored or read out. The performance of these systems depends to a great deal on the performance of the laser diode with regard to its modulation and noise characteristics. Since the modulation and noise characteristics of laser diodes are of vital importance for optoelectronic systems, the need for a book arises that concentrates on this subject. This book thus closes the gap between books on the device physics of semiconductor lasers and books on system design. Complementary to the specific topics concerning modulation and noise, the first part of this book reviews the basic laser characteristics, so that even a reader without detailed knowledge of laser diodes may follow the text. In order to understand the book, the reader should have a basic knowledge of electronics, semiconductor physics and optical communica tions. The work is primarily written for the engineer or scientist working in the field of optoelectronics; however, since the book is self-contained and since it contains a lot of numerical examples, it may serve as a textbook for graduate students. In the field of laser diode modulation and noise a vast amount has been published during recent years. Even though the book contains more than 600 references, only a small part of the existing literature is included.
William Risk, Timothy Gosnell and Arto Nurmikko have brought together their diverse expertise from industry and academia to write the first fully comprehensive book on the generation and application of blue-green lasers. This volume describes the theory and practical implementation of three techniques for the generation of blue-green light: nonlinear frequency conversion of infrared lasers, upconversion lasers, and wide bandgap semiconductor diode lasers. In addition, it looks at the various applications that have driven the development of compact sources of blue-green light, and reflects on the recent application of these lasers in high-density data storage, color displays, reprographics, and biomedical technology. Compact Blue-Green Lasers is suitable for graduate-level courses or as a reference for academics and professionals in optics, applied physics, and electrical engineering.
The compact size, reliability, and low cost of diode lasers lead to applications throughout modern technology-most importantly in modern optical telecommunication systems. This book presents a comprehensive introduction to the principles and operation of diode lasers. It begins with a review of semiconductor physics and laser fundamentals, before describing the most basic homojunction laser. Later chapters describe more advanced laser types and their applications, including the most recently developed and exotic laser designs. The author's intuitive style, coupled with an extensive set of worked examples and sample problems, make this an outstanding introduction to the subject.
This book offers the reader a practical guide to the control and characterization of laser diode beams. Laser diodes are the most widely used lasers, accounting for 50% of the global laser market. Correct handling of laser diode beams is the key to the successful use of laser diodes, and this requires an in-depth understanding of their unique properties. Following a short introduction to the working principles of laser diodes, the book describes the basics of laser diode beams and beam propagation, including Zemax modeling of a Gaussian beam propagating through a lens. The core of the book is concerned with laser diode beam manipulations: collimating and focusing, circularization and astigmatism correction, coupling into a single mode optical fiber, diffractive optics and beam shaping, and manipulation of multi transverse mode beams. The final chapter of the book covers beam characterization methods, describing the measurement of spatial and spectral properties, including wavelength and linewidth measurement techniques. The book is a significantly revised and expanded version of the title Laser Diode Beam Basics, Manipulations and Characterizations by the same author. New topics introduced in this volume include: laser diode types and working principles, non-paraxial Gaussian beam, Zemax modeling, numerical analysis of a laser diode beam, spectral property characterization methods, and power and energy characterization techniques. The book approaches the subject in a practical way with mathematical content kept to the minimum level required, making the book a convenient reference for laser diode users.
Since the first edition of this book was published in 1997, the photonics landscape has evolved considerably and so has the role of distributed feedback (DFB) laser diodes. Although tunable laser diodes continue to be introduced in advanced optical communication systems, DFB laser diodes are still widely applied in many deployed systems. This also includes wavelength tunable DFB laser diodes and DFB laser diode arrays, usually integrated with intensity or phase modulators and semiconductor optical amplifiers. This valuable resource gives professionals a comprehensive description of the different effects that determine the behavior of a DFB laser diode. Special attention is given to two new chapters on wavelength tunable DFB laser diodes and bistable and unstable DFB laser diodes. Among many other updates throughout the reference, semi-conductor and electromagnetic professionals are also provided two new appendices. This book fully covers the underlying theory, commercial applications, necessary design criteria, and future direction of this technology.
This comprehensive reference discusses the underlying physics, operational principles, and performance and applications of tunable laser diodes. The book is supplemented with practical examples and helpful notations.