Download Free The Biology Of Disease Vectors Book in PDF and EPUB Free Download. You can read online The Biology Of Disease Vectors and write the review.

Biology of Disease Vectors presents a comprehensive and advanced discussion of disease vectors and what the future may hold for their control. This edition examines the control of disease vectors through topics such as general biological requirements of vectors, epidemiology, physiology and molecular biology, genetics, principles of control and insecticide resistance. Methods of maintaining vectors in the laboratory are also described in detail.No other single volume includes both basic information on vectors, as well as chapters on cutting-edge topics, authored by the leading experts in the field. The first edition of Biology of Disease Vectors was a landmark text, and this edition promises to have even more impact as a reference for current thought and techniques in vector biology.Current - each chapter represents the present state of knowledge in the subject areaAuthoritative - authors include leading researchers in the fieldComplete - provides both independent investigator and the student with a single reference volume which adopts an explicitly evolutionary viewpoint throuoghout all chapters. Useful - conceptual frameworks for all subject areas include crucial information needed for application to difficult problems of controlling vector-borne diseases
Only one generation ago, entomology was a proudly isolated discipline. In Comstock Hall, the building of the Department of Entomology at Cornell University where I was first introduced to experimental science in the laboratory of Tom Eisner, those of us interested in the chemistry of life felt like interlopers. In the 35 years that have elapsed since then, all of biology has changed, and entomology with it. Arrogant molecular biologists and resentful classical biologists might think that what has happened is a hostile take-over of biology by molecular biology. But they are wrong. More and more we now understand that the events were happier and much more exciting, amounting to a new synthesis. Molecular Biology, which was initially focused on the simplest of organisms, bacteria and viruses, broke out of its confines after the initial fundamental questions were answered - the structure of DNA, the genetic code, the nature of regulatory genes - and, importantly, as its methods became more and more generally applicable. The recombinant DNA revo lution of the 1970s, the development of techniques for sequencing macromolecules, the polymerase chain reaction, new molecular methods of genetic analysis, all brought molecular biology face to face with the infinite complexity and the exuber ant diversity of life. Molecular biology itself stopped being an isolated diScipline, pre occupied with the universal laws of life, and became an approach to addressing fas cinating specific problems from every field of biology.
Population Biology of Vector-Borne Diseases is the first comprehensive survey of this rapidly developing field. The chapter topics provide an up-to-date presentation of classical concepts, reviews of emerging trends, synthesis of existing knowledge, and a prospective agenda for future research. The contributions offer authoritative and international perspectives from leading thinkers in the field. The dynamics of vector-borne diseases are far more intrinsically ecological compared with their directly transmitted equivalents. The environmental dependence of ectotherm vectors means that vector-borne pathogens are acutely sensitive to changing environmental conditions. Although perennially important vector-borne diseases such as malaria and dengue have deeply informed our understanding of vector-borne diseases, recent emerging viruses such as West Nile virus, Chikungunya virus, and Zika virus have generated new scientific questions and practical problems. The study of vector-borne disease has been a particularly rich source of ecological questions, while ecological theory has provided the conceptual tools for thinking about their evolution, transmission, and spatial extent. Population Biology of Vector-Borne Diseases is an advanced textbook suitable for graduate level students taking courses in vector biology, population ecology, evolutionary ecology, disease ecology, medical entomology, viral ecology/evolution, and parasitology, as well as providing a key reference for researchers across these fields.
Mir S. Mulla joined the faculty of the Entomology Department at the University of California, Riverside in 1956, only two years after the Riverside campus was established as an independent campus within the University of California system. Prior to his appointment, Mir received his B.S. from Cornell University and then moved to the University of California, Berkeley to pursue his graduate studies. His Ph.D. from Berkeley, awarded in 1955, completed his formal American education which was the purpose of his immigration from his native Kandahar in Afghanistan. In his over 50 years at Riverside, Mir has made an incalculable impact on vector biology both within the United States and in developing countries throughout the world. Within Southern California, Mir’s basic and applied research led to the rapid and sustainable control of mosquitoes and eye gnats in the Coachella Valley and so directly enabled this region to grow to the thriving, large community it is today. In 2006 his efforts in facilitating the development of the low desert of southern California were recognized through the dedication of the Mir S. Mulla Biological Control Facility by the Coachella Valley Mosquito and Vector Control District. His success has been so profound that it remains somewhat cryptic to the many who now reside in, visit, and enjoy, this region of California, oblivious to the insect problems that severely restrained development until Mir and his students ?rst applied their expertise many decades ago.
This book aims to present updated knowledge on various aspects of the natural history, biology, and impact of triatomines to all interested readers. Each chapter will be written by authorities in the respective field, covering topics such as behavior, neurophysiology, immunology, ecology, and evolution. The contents will consider scientific, as well as innovative perspectives, on the problems related to the role of triatomine bugs as parasite vectors affecting millions in the Latin American region.
Covering the theory and practice of non-insecticidal control of insect vectors of human disease, this book provides an overview of methods including the use of botanical biocides and insect-derived semiochemicals, with an overall focus on integrated vector management strategies. While the mainstay of malaria control programmes relies on pesticides, there is a resurgence in the research and utilisation of non-insecticidal control measures due to concerns over rapid development and spread of insecticide resistance, and long-term environmental impacts. This book provides examples of successful applications in the field and recommendations for future use.
This book gathers contributions by 16 international authors on the phenomenon “bats,” shedding some light on their morphology, the feeding behaviors (insects, fruits, blood) of different groups, their potential and confirmed transmissions of agents of diseases, their endo- and ectoparasites, as well as countless myths surrounding their lifestyle (e.g. vampirism, chupacabras, batman etc.). Bats have been known in different cultures for several thousand centuries, however their nocturnal activities have made them mysterious and led to many legends and myths, while proven facts remained scarce. Even today, our knowledge of bats remains limited compared to other groups in the animal kingdom. Also, their famous ability to avoid collisions with obstacles during their nightly flights with the help of a sophisticated and unique system using ultrasound waves (which are transmitted and received) is as poorly studied as birds finding their way from continent to continent. In recent times, where globalization transports millions of people and goods from one end of the earth to the other, there are increased risks posed by agents of diseases, as a result of which bats have received increasing attention as potential vectors. These suppositions are based on their proven transmission of viruses such as rabies. In dedicated chapters, the book addresses the following topics: • The world of bats • The astonishing morphology of bats • Bats as potential reservoir hosts for vector-borne diseases • Bat endoparasites • Macroparasites – ectoparasites • Glimpses into how bats fly • Blood-licking bats • Vampirism in medicine and culture • Chupacabras and “goat milkers” • Myths on candiru As such, this book provides a broad range of information for all non-experts interested in biological topics, but also for people working in this field, as well as physicians and veterinarians who are confronted with clinical cases, and for teachers and students interested in expanding their knowledge of biology and of past and present cultures.
This practical book covers all aspects of the biology of malaria vectors, with notes on the vectors of dengue. It is the first work in this field to concentrate on mosquitoes, rather than covering all disease vectors. Authored by renowned field entomologist Jacques Derek Charlwood, it disseminates his vast experience working on mosquito biology, ecology and the evaluation of new vector control tools across five continents over the past 40 years. Covering all aspects from classification and systematics, population dynamics, vector control, to surveillance and sampling, epidemics, and a selection of case histories, the book also considers genetics and resistance, Aedes biology, and malaria and dengue models. It is designed to fill the gap between very specialized texts and undergraduate books on general disease vectors, and is ideal as a textbook for postgraduate courses in entomology and mosquito vectors of disease.
Global warming and globalization are the buzzwords of our time. They have nearly reached a religious status and those who deny their existence are considered modern heretics. Nevertheless, the earth has become an overcrowded village, traversable within a single day. Thus it is hardly surprising that besides persons and goods also agents of disease are easily transported daily from one end of the world to the other, threatening the health and lives of billions of humans and their animals. Agents of diseases (prions, viruses, bacteria, fungi and parasites) are not only transmitted by body contact or direct exchange of bodily fluids, but also by means of vectors which belong to the groups of licking or blood-sucking arthropods (mites, ticks, insects) that live close to humans and their houses. Without a doubt the recently accelerating globalization supports the import of agents of disease into countries where they never had been or where they had long since been eradicated, leading to a false sense of living on a “safe island.” These newly imported or reintroduced diseases – called “emerging diseases” – may lead to severe outbreaks in cases where the countries are not prepared to combat them, or in cases where viruses are introduced that cannot be controlled by medications or vaccines. Arthropods are well known vectors for the spread of diseases. Thus their invasion from foreign countries and their spreading close to human dwellings must be blocked everywhere (in donor and receptor countries) using safe and effective measures. This book presents reviews on examples of such arthropod-borne emerging diseases that lurk on the fringes of our crowded megacities. The following topics show that there is an ongoing invasion of potential vectors and that control measures must be used now in order to avoid disastrous outbreaks of mass diseases.
Approx.500 pagesApprox.500 pages