Download Free The Basic Notions For Over Off Under Neutrosophic Geometric Programming Problems Book in PDF and EPUB Free Download. You can read online The Basic Notions For Over Off Under Neutrosophic Geometric Programming Problems and write the review.

Neutrosophic (over, off, under) set and logic were defined for the first time in 1995 by Florentin Smarandache, and presented during 1995-2018 to various national and international conferences and seminars. The (over, off, under) neutrosophic geometric programming was put forward by Huda et al. in (2016), in an attempt to define a new type of geometric programming using (over, off, under) neutrosophic less than or equal to. This paper completes the basic notions of (over, off, under) neutrosophic geometric programming illustrating its convexity condition, and its decomposition theorems. The definitions of (α, β, γ) and strong (α, β, γ) are introduced, and some of their important properties are proved.
This paper comes as a second step serves the purpose of constructing a neutrosophic optimization model for the relation geometric programming problems subject to (max, product) operator in its constraints.
In this volume, we present a set of research that was published in cooperation with a number of researchers and those interested in keeping pace with the great scientific development that our contemporary world is witnessing, and one of its products was neutrosophic science, which was founded by the American scientist and mathematical philosopher Florentin Smarandache in 1995. Through it, we present a new vision for some research methods. Operations research to the concepts of this science.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
This twelfth volume of Collected Papers includes 86 papers comprising 976 pages on Neutrosophics Theory and Applications, published between 2013-2021 in the international journal and book series “Neutrosophic Sets and Systems” by the author alone or in collaboration with the following 112 co-authors (alphabetically ordered) from 21 countries: Abdel Nasser H. Zaied, Muhammad Akram, Bobin Albert, S. A. Alblowi, S. Anitha, Guennoun Asmae, Assia Bakali, Ayman M. Manie, Abdul Sami Awan, Azeddine Elhassouny, Erick González-Caballero, D. Dafik, Mithun Datta, Arindam Dey, Mamouni Dhar, Christopher Dyer, Nur Ain Ebas, Mohamed Eisa, Ahmed K. Essa, Faruk Karaaslan, João Alcione Sganderla Figueiredo, Jorge Fernando Goyes García, N. Ramila Gandhi, Sudipta Gayen, Gustavo Alvarez Gómez, Sharon Dinarza Álvarez Gómez, Haitham A. El-Ghareeb, Hamiden Abd El-Wahed Khalifa, Masooma Raza Hashmi, Ibrahim M. Hezam, German Acurio Hidalgo, Le Hoang Son, R. Jahir Hussain, S. Satham Hussain, Ali Hussein Mahmood Al-Obaidi, Hays Hatem Imran, Nabeela Ishfaq, Saeid Jafari, R. Jansi, V. Jeyanthi, M. Jeyaraman, Sripati Jha, Jun Ye, W.B. Vasantha Kandasamy, Abdullah Kargın, J. Kavikumar, Kawther Fawzi Hamza Alhasan, Huda E. Khalid, Neha Andalleb Khalid, Mohsin Khalid, Madad Khan, D. Koley, Valeri Kroumov, Manoranjan Kumar Singh, Pavan Kumar, Prem Kumar Singh, Ranjan Kumar, Malayalan Lathamaheswari, A.N. Mangayarkkarasi, Carlos Rosero Martínez, Marvelio Alfaro Matos, Mai Mohamed, Nivetha Martin, Mohamed Abdel-Basset, Mohamed Talea, K. Mohana, Muhammad Irfan Ahamad, Rana Muhammad Zulqarnain, Muhammad Riaz, Muhammad Saeed, Muhammad Saqlain, Muhammad Shabir, Muhammad Zeeshan, Anjan Mukherjee, Mumtaz Ali, Deivanayagampillai Nagarajan, Iqra Nawaz, Munazza Naz, Roan Thi Ngan, Necati Olgun, Rodolfo González Ortega, P. Pandiammal, I. Pradeepa, R. Princy, Marcos David Oviedo Rodríguez, Jesús Estupiñán Ricardo, A. Rohini, Sabu Sebastian, Abhijit Saha, Mehmet Șahin, Said Broumi, Saima Anis, A.A. Salama, Ganeshsree Selvachandran, Seyed Ahmad Edalatpanah, Sajana Shaik, Soufiane Idbrahim, S. Sowndrarajan, Mohamed Talea, Ruipu Tan, Chalapathi Tekuri, Selçuk Topal, S. P. Tiwari, Vakkas Uluçay, Maikel Leyva Vázquez, Chinnadurai Veerappan, M. Venkatachalam, Luige Vlădăreanu, Ştefan Vlăduţescu, Young Bae Jun, Wadei F. Al-Omeri, Xiao Long Xin.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
The intention of this paper is to give the general de nition of cone metric space in the context of the neutrosophic theory. In this relation, we obtain some fundamental results concerting xed points for weakly compatible mapping.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.