Download Free The Agulhas Current Book in PDF and EPUB Free Download. You can read online The Agulhas Current and write the review.

Based on the research findings of 60 years, the author describes the origins of the Agulhas Current, its behaviour, its influence on the adjacent continental shelf, its effect on local weather and its role in linking the Indian and Atlantic Oceans. The text is well-illustrated and includes asides on the history of research on the Current. An exhaustive bibliography gives easy access to present knowledge on this important current system.
Based on the research findings of 60 years, the author describes the origins of the Agulhas Current, its behaviour, its influence on the adjacent continental shelf, its effect on local weather and its role in linking the Indian and Atlantic Oceans. The text is well-illustrated and includes asides on the history of research on the Current. An exhaustive bibliography gives easy access to present knowledge on this important current system.
Ocean Currents is a derivative of the Encyclopedia of Ocean Sciences, 2nd Edition and serves as an important reference on current ocean current knowledge and expertise in one convenient and accessible source. Its selection of articles—all written by experts in their field—focuses on key ocean current concepts. Its topics include ocean currents, the circulation of deep water, the contrasting circulations of the seas, the circulation in fjords, estuaries and the effects of rivers, and the intermittency and variability of the oceans. Ocean Currents serves as an ideal reference for topical research. References related articles on ocean currents to facilitate further research Richly illustrated with figures and tables that aid in understanding key concepts Includes an introductory overview of ocean currents and then explores each topic in detail, making it useful to experts and graduate-level researchers Topical arrangement makes it the perfect desk reference
Measuring Ocean Currents: Tools, Technologies, and Data covers all major aspects of ocean current measurements in view of the implications of ocean currents on changing climate, increasing pollution levels, and offshore engineering activities. Although more than 70% of the Earth is covered by ocean, there is limited information on the countless fine- to large-scale water motions taking place within them. This book fills that information gap as the first work that summarizes the state-of-the-art methods and instruments used for surface, subsurface, and abyssal ocean current measurements. Readers of this book will find a wealth of information on Lagrangian measurements, horizontal mapping, imaging, Eulerian measurements, and vertical profiling techniques. In addition, the book describes modern technologies for remote measurement of ocean currents and their signatures, including HF Doppler radar systems, satellite-borne sensors, ocean acoustic tomography, and more. Crucial aspects of ocean currents are described in detail as well, including dispersion of effluents discharged into the sea and transport of beneficial materials—as well as environmentally hazardous materials—from one region to another. The book highlights several important practical applications, showing how measurements relate to climate change and pollution levels, how they affect coastal and offshore engineering activities, and how they can aid in tsunami detection. - Coverage of measurement, mapping and profiling techniques - Descriptions of technologies for remote measurement of ocean currents and their signatures - Reviews crucial aspects of ocean currents, including special emphasis on the planet-spanning thermohaline circulation, known as the ocean's "conveyor belt," and its crucial role in climate change
This accessible, informative and entertaining, book provides the detail and substance that will reward the serious naturalist or the amateur diver
Ocean Currents: Physical Drivers in a Changing World opens with a general introduction to the character, measurement, and simulation of ocean currents, leading to a physical and dynamical framework for understanding the wide variety of flows encountered in the oceans. The book comprises chapters covering distinct aspects of contrasting ocean currents: broad and slow, deep and shallow, narrow and swift, large scale and small scale, low latitudes and high latitudes, and moving in horizontal and vertical planes. Through this approach the authors cover a wide range of applications, from local to global, with considerable geographical context. - Provides analyses of ocean observations and numerical model simulations, highlighting the pathways and drift associated with ocean currents, around the World Ocean, linked to online exercises for instructors and students that extend this perspective - Presents applications to natural phenomena, showing how ocean currents shape marine ecosystems, helping researchers understand the distribution and adaptation of life in the oceans - Addresses societal challenges, specifically how ocean currents disperse pollutants (e.g. plastic) from coastal sources and how the global ocean circulation is central to our changing climate, helping students and researchers develop an interdisciplinary approach to global environmental change
This complete reference to marine renewable energy covers aspects of resource characterization and physical effects of harvesting the ocean’s vast and powerful resources—from wave and tidal stream to ocean current energy. Experts in each of these areas contribute their insights to provide a cohesive overview of the marine renewable energy spectrum based on theoretical, numerical modeling, and field-measurement approaches. They provide clear explanations of the underlying physics and mechanics, and give close consideration to practical implementation aspects, including impacts on the physical system. Engineers, researchers, and students alike will find invaluable tools and studies that will aid them in realizing significant sustainable energy production from near-shore and ocean environments.
In this paper differences and anomalies in west coast seasonal flow structures have been highlighted. In particular, it was emphasized that flow off Washington has significant differences from that of Oregon; namely, during summer, flow at mid-shelf is more poleward off Washington, and during winter, flow on the inner-shelf is more equatorward off Washington than off Oregon. The former result may be related to the poleward decrease in the longshelf wind stress; the latter result may be related to the presence of the Columbia River plume. Off southern California the near-surface flow over the shelf is more persistently equatorward than that off Washington . Conversely, the flow over the slope in the upper 100 m of the water column is more persistently poleward than that off washington. Also, the undercurrent structure, that is, a subsurface maximum, is maintained at least from summer to early winter off southern California (no data are yet available from spring), but only during summer and early fall off washington. We note that the seasonal cycle of vertical shear in the two locations is similar, although a reversal in sign sometimes occurs off Washington. ACKNOWLEDGEMZNTS This work was supported by the Department of Energy under Grant DE-FG05-85ER60333t4 and by the National Science Foundation under Grant OCE 86-01058#1. 175 From: Adriana Huyer, College of Oceanography, Oregon State University, Corvallis, OR. On: Review and Commentary to paper POLEWARD FLOW NEAR TRE NORTRERH AND SOU'l'BERH BOONDARIES OF TRE U. S. WEST COAST, by Barbara Hickey.
It is now well known that the mid-ocean flow is almost everywhere domi nated by so-called synoptic or meso-scale eddies, rotating about nearly vertical axes and extending throughout the water column. A typical mid ocean horizontal scale is 100 km and a time scale is 100 days: these meso scale eddies have swirl speeds of order 10 cm s -1 which are usually con siderably greater than the long-term average flow. Many types of eddies with somewhat different scales and characteristics have been identified. The existence of such eddies was suspected by navigators more than a century ago and confirmed by the world of C. O'D. Iselin and V. B. Stock man in the 1930's. Measurements from RIV Aries in 1959/60, using the then newly developed neutrally buoyant floats, indicated the main char acteristics of the eddies in the deep ocean of the NW Atlantic while a se ries of Soviet moored current-meter arrays culminated, in POLYGON- 1970, in the explicit mapping of an energetic anticyclonic eddy in the tropical NE Atlantic. In 1973 a large collaborative (mainly U. S. , U. K. ) program, MODE-I, produced synoptic charts for an area of the NW At lantic and confirmed the existence of an open ocean eddy field and es tablished its characteristics. Meso-scale eddies are now known to be of interest and importance to marine chemists and biologists as well as to physical oceanographers and meteorologists.
Contributed articles.