Download Free The Advanced Smart Grid Edge Power Driving Sustainability Second Edition Book in PDF and EPUB Free Download. You can read online The Advanced Smart Grid Edge Power Driving Sustainability Second Edition and write the review.

Placing emphasis on practical “how-to” guidance, this cutting-edge resource provides a first-hand, insider’s perspective on the advent and evolution of smart grids in the 21st century. This book presents engineers, researchers, and students with the building blocks that comprise basic smart grids, including power plant, transmission substation, distribution, and meter automation. Moreover, this forward-looking volume explores the next step of this technology’s evolution. It provides a detailed explanation of how an advanced smart grid incorporates demand response with smart appliances and management mechanisms for distributed generation, energy storage, and electric vehicles. This updated second edition focuses on the disruptive impact of DER. This new edition also includes a glossary with well over 100 acronyms and terms, acknowledging the tremendous challenge for a student of smart energy and smart grid to grasp this complex industry.
This comprehensive new resource demonstrates how to build smart grids utilizing the latest telecommunications technologies. Readers find practical coverage of PLC and wireless for smart grid and are given concise excerpts of the different technologies, networks, and services around it. Design and planning guidelines are shown through the combination of electricity grid and telecommunications technologies that support the reliability, performance and security requirements needed in smart grid applications. This book covers a wide range of critical topics, including telecommunications for power engineers, power engineering for telecommunications engineers, utility applications projecting in smart grids, technologies for smart grid networks, and telecommunications architecture. This practical reference is supported with in-depth case studies.
Smart cities promise to generate economic, social and environmental value through the seamless connection of urban services and infrastructure by digital technologies. However, there is scant evidence of how these activities can enhance social well-being and contribute to just and equitable communities. Smart and Sustainable Cities? Pipedreams, Practicalities and Possibilities provides one of the first examinations of how smart cities relate to environmental and social issues. It addresses the gap between the ambitious visions of smart cities and the actual practices on the ground by focusing on the social and environmental dimensions of real smart city initiatives as well as the possibilities they hold for creating more equitable and progressive cities. Through detailed analyses of case studies in the United States, Australia, the United Kingdom, Japan, Germany, India and China, the contributors describe the various ways that social and environmental issues are interpreted and integrated into smart city initiatives and actions. The findings point towards the need for more intentional engagement and collaboration with all urban stakeholders in the design, development and maintenance of smart cities to ensure that everyone benefits from the increasingly digitalised urban environments of the twenty-first century. The chapters in this book were originally published as a special issue of the journal Local Environment.
Written by a leading expert in the field, this practical book offers a comprehensive understanding of the impact of extreme weather and the possible effects of climate change on the power grid. The impact and restoration of floods, winter storms, wind storms, and hurricanes as well as the effects of heat waves and dry spells on thermal power plants is explained in detail. This book explores proven practices for successful restoration of the power grid, increased system resiliency, and ride-through after extreme weather and provides readers with examples from super storm Sandy. This book presents the effects of lack of ground moisture on transmission line performance and gives an overview of line insulation coordination, stress-strength analysis, and tower insulation strength, and then provides readers with tangible solutions. Structural hardening of power systems against storms, including wind pressure, wood poles, and vegetation management is covered. Moreover, this book provides suggestions for practical implementations to improve future smart grid resiliency.
This book introduces several battery management problems and provides solutions using model-based approaches. It provides detailed coverage of battery management problems, including battery impedance estimation, battery capacity estimation, state of charge estimation, state of health estimation, battery thermal management, and optimal charging algorithms. The book introduces important battery management problems in a modularized fashion, decoupling each battery management problem from others as much as possible, allowing you to focus on understanding a particular topic rather than having to understand all aspects of a battery management system. You will get the necessary background to understand, implement and improve battery fuel gauges in electric vehicles, and general state of health of the battery; use proven models and algorithms to estimate the thermal properties of a battery; and know the basics of smart battery charger design. You will also be equipped to accurately estimate battery features of vehicles, such as state of charge, expected charging time, and state of health, to make customized charging waveforms for each vehicle. The book teaches you how to create simulation environments to test and validate algorithms against model uncertainty and measurement noise. In addition, the importance of benchmarking battery management algorithms is covered, and several bench marking metrics are presented. Included MATLAB codes give you an easy way to test the algorithms using realistic data and to develop and test alternative solutions. This is a useful and timely guide for battery engineers at all levels, as well as research scientists and advanced students working in this robust and rapidly advancing area.
This comprehensive, two-volume resource provides a thorough introduction to lithium ion (Li-ion) technology. Readers get a hands-on understanding of Li-ion technology, are guided through the design and assembly of a battery, through deployment, configuration and testing. The book covers dozens of applications, with solutions for each application provided. Volume Two focuses on small batteries in consumer products and power banks, as well as large low voltage batteries in stationary or mobile house power, telecom, residential, marine and microgrid. Traction batteries, including passenger, industrial, race vehicles, public transit, marine, submarine and aircraft are also discussed. High voltage stationary batteries grid-tied and off-grid are presented, exploring their use in grid quality, arbitrage and back-up, residential, microgrid, industrial, office buildings. Finally, the book explores what happens when accidents occur, so readers may avoid these mistakes. Written by a prominent expert in the field and packed with over 500 illustrations, these volumes contain solutions to practical problems, making it useful for both the novice and experienced practitioners.
Large-scale battery packs are needed in hybrid and electric vehicles, utilities grid backup and storage, and frequency-regulation applications. In order to maximize battery-pack safety, longevity, and performance, it is important to understand how battery cells work. This first of its kind new resource focuses on developing a mathematical understanding of how electrochemical (battery) cells work, both internally and externally. This comprehensive resource derives physics-based micro-scale model equations, then continuum-scale model equations, and finally reduced-order model equations. This book describes the commonly used equivalent-circuit type battery model and develops equations for superior physics-based models of lithium-ion cells at different length scales. This resource also presents a breakthrough technology called the “discrete-time realization algorithm” that automatically converts physics-based models into high-fidelity approximate reduced-order models.
Written by a leading expert in the utility field, this practical resource guides professionals in the evolution of the Smart Grid and offers insight into distribution automation, storage, and microgrid. This book highlights the journey to a transformed electric utility, provides solid examples, and includes real-world case studies. Readers find guidance on new energy storage solutions and electric value chain disruptors. Professionals learn how to overcome challenges related to integrating supply and demand diversity. The book highlights how new technologies impact the day-to-day operations of a utility and how these technologies can transform the normal functioning of the utility. Discussions are provided about how a transformed utility can be a springboard to a smart city. Professionals will be able to apply the strategies of technologies in this resource to guide them to success in the field. This book defines the roadmap to the utility of the future and provides a vision for how utilities can thrive in their new environment.
Future of Utilities - Utilities of the Future: How technological innovations in distributed generation will reshape the electric power sector relates the latest information on the electric power sector its rapid transformation, particularly on the distribution network and customer side. Trends like the rapid rise of self-generation and distributed generation, microgrids, demand response, the dissemination of electric vehicles and zero-net energy buildings that promise to turn many consumers into prosumers are discussed. The book brings together authors from industry and academic backgrounds to present their original, cutting-edge and thought-provoking ideas on the challenges currently faced by electric utilities around the globe, the opportunities they present, and what the future might hold for both traditional players and new entrants to the sector. The book's first part lays out the present scenario, with concepts such as an integrated grid, microgrids, self-generation, customer-centric service, and pricing, while the second part focuses on how innovation, policy, regulation, and pricing models may come together to form a new electrical sector, exploring the reconfiguring of the current institutions, new rates design in light of changes to retail electricity markets and energy efficiency, and the cost and benefits of integration of distributed or intermittent generation, including coupling local renewable energy generation with electric vehicle fleets. The final section projects the future function and role of existing electrical utilities and newcomers to this sector, looking at new pathways for business and pricing models, consumer relations, technology, and innovation. - Contains discussions that help readers understand the underlying causes and drivers of change in the electrical sector, and what these changes mean in financial, operational, and regulatory terms - Provides thought-provoking ideas on the challenges currently faced by electric utilities around the globe, the opportunities they present, and what the future might hold for both traditional players and new entrants to the sector - Helps readers anticipate what developments are likely to define the function and role of the utility of the future
SMART GRID TELECOMMUNICATIONS Discover the foundations and main applications of telecommunications to smart grids In Smart Grid Telecommunications, renowned researchers and authors Drs. Alberto Sendin, Javier Matanza, and Ramon Ferrús deliver a focused treatment of the fundamentals and main applications of telecommunication technologies in smart grids. Aimed at engineers and professionals who work with power systems, the book explains what smart grids are and where telecommunications are needed to solve their various challenges. Power engineers will benefit from explanations of the main concepts of telecommunications and how they are applied to the different domains of a smart grid. Telecommunication engineers will gain an understanding of smart grid applications and services and will learn from the explanations of how telecommunications need to be adapted to work with them. The authors offer a simplified vision of smart grids with rigorous coverage of the latest advances in the field, while avoiding some of the technical complexities that can hinder understanding in this area. The book offers: Discussions of why telecommunications are necessary in smart grids and the various telecommunication services and systems relevant for them An exploration of foundational telecommunication concepts ranging from system-level aspects, such as network topologies, multi-layer architectures and protocol stacks, to communications channel transmission- and reception-level aspects Examinations of telecommunication-related smart grid services and systems, including SCADA, protection and teleprotection, smart metering, substation and distribution automation, synchrophasors, distributed energy resources, electric vehicles, and microgrids A treatment of wireline and wireless telecommunication technologies, like DWDM, Ethernet, IP, MPLS, PONs, PLC, BPL, 3GPP cellular 4G and 5G technologies, Zigbee, Wi-SUN, LoRaWAN, and Sigfox, addressing their architectures, characteristics, and limitations Ideal for engineers working in power systems or telecommunications as network architects, operations managers, planners, or in regulation-related activities, Smart Grid Telecommunications is also an invaluable resource for telecommunication network and smart grid architects.