Download Free The 14th International Conference On The Coordination And Organometallic Chemistry Of Germanium Tin And Lead Iccoc Gtl 2013 Book in PDF and EPUB Free Download. You can read online The 14th International Conference On The Coordination And Organometallic Chemistry Of Germanium Tin And Lead Iccoc Gtl 2013 and write the review.

During the last decade, fullerenes and carbon nanotubes have attracted special interest as new nanocarbons with novel properties. Because of their hollow caged structure, they can be used as containers for atoms and molecules, and nanotubes can be used as miniature test-tubes. Chemistry of Nanocarbons presents the most up-to-date research on chemical aspects of nanometer-sized forms of carbon, with emphasis on fullerenes, nanotubes and nanohorns. All modern chemical aspects are mentioned, including noncovalent interactions, supramolecular assembly, dendrimers, nanocomposites, chirality, nanodevices, host-guest interactions, endohedral fullerenes, magnetic resonance imaging, nanodiamond particles and graphene. The book covers experimental and theoretical aspects of nanocarbons, as well as their uses and potential applications, ranging from molecular electronics to biology and medicine.
Pergamon Texts in Inorganic Chemistry, Volume 14: The Chemistry of Germanium, Tin, and Lead focuses on the properties, characteristics, transformations, and reactions of lead, germanium, and tin. The book focuses on germanium and compounds of Ge(I) and Ge(II). Discussions focus on germanium(II) compounds of phosphorus and arsenic, germanium(II) imide and nitride, monohalides, analytical determination, biological activity, chemical behavior of germanium, and production and industrial use of germanium. The text then elaborates on organogermanium compounds, complexes of germanium(IV), and tin. Topics include nuclear magnetic resonance, chemical properties of tin metal, isotopes of tin, occurrence and distribution of tin, and fluorogermanates and chlorogermanates. The manuscript takes a look at nuclear magnetic resonance, extraction, industrial and commercial utilization, toxicity, and chemical properties of metallic lead. The publication is a vital source of data for researchers interested in the chemistry of lead, germanium, and tin.
Boron has made a significant impact in our lives through its quiet use in fertilizers, fungicides, soaps, detergents, and heat-resistant glassware. Boron Science: New Technologies and Applications addresses the applications of boron in chemistry, industry, medicine, and pharmacology by explaining its role in problems such as catalysis and hydrobora
Boron science features in numerous fields including organic chemistry, organometallic chemistry and medicine. Boron is unique in all aspects of science and engineering and has made a significant impact in our daily lives through its use in fertilizers, germicides, fungicides, soaps, detergents, cancer drugs as well as many household glassware utensils, ceramics and cell phone windows. These volumes bring together an array of internationally renowned scientists to discuss the very latest developments in the application of boron in a broad range of disciplines. This multi-reference work describes the topic by appointing leading researchers to write on current developments in boron science, showcasing its importance to the four separate areas described in each volume: Organometallic Chemistry, Catalysis, Materials Chemistry and Medicine.Written to cover the full range of applications and innovations in boron science, this all-encompassing work offers us a one-stop reference compiled by world-leading researchers and practitioners of the subject, making it perfect for undergraduate and graduate students of chemistry, and researchers and practitioners interested in their professional development.
Knowledge on endohedral metallofullerenes (EMFs) has increased dramatically during the last decade. Numerous research findings have been reported, making it an opportune time to provide a systematic update on EMFs. Endohedral Metallofullerenes: Basics and Applications presents the most comprehensive review on all aspects of EMFs including their gen
This book introduces vibronic coupling density and vibronic coupling constant analyses as a way to understand molecular structure and chemical reactions. After quantum study, the behavior of electrons circulating around nuclei led to the principal concept that underlies all explanations in chemistry. Many textbooks have given plausible explanations to clarify molecular structure—for example, the bond elongation of ethylene under anionization and the nonplanar structure of ammonia. Frontier molecular orbital concepts were proposed to visualize the path of chemical reactions, and conventional explanations gave students a familiarity with molecular structures in terms of the electronic state. By contrast, this book offers a more rational and more convincing path to understanding. It starts from the ab initio molecular Hamiltonian and provides systematic, rational approaches to comprehend chemical phenomena. In this way, the book leads the reader to a grasp of the quantitative evaluation of the force applied under the molecular deformation process. As well, guidelines are offered for integrating the traditional “hand-waving” approach of chemistry with more rational and general VCD and VCC alternatives along with the outlook for newly functionalized chemical systems.
The continued and evolving significance of boron chemistry to the wider chemical community is demonstrated by the international and interdisciplinary nature of the research reported in this book. Contemporary Boron Chemistry encompasses inorganic and organic compounds as well as polymers, solid-state materials, medicinal aspects and theoretical studies. Covering many areas of chemistry with boron at its centre, topics include applications to polyolefin catalysis, medicine, materials and polymers; boron cluster chemistry, including carboranes and metal-containing clusters; organic and inorganic chemistry of species containing only 1 or 2 boron atoms; and theoretical studies of boron-containing compounds. New materials with novel optical and electronic properties are also discussed. Comprehensive and up to date, graduates and researchers in a wide range of fields, particularly those in organometallic and organic chemistry and materials science, will welcome this book.
This is the first book to deal with C-Ge, C-Sn and C-Pb bonds asfunctional groups. This concept helps to better understand thechemistry of these compounds, which find an increasing amount ofapplications. The volume concentrates on analytical aspects, and onsafety and toxicology in the environment. This volume is now available in electronic format from BooksOnline.
This multi-author edited volume reviews the recent developments in boron chemistry, with a particular emphasis on the contribution of computational chemistry. The contributors come from Europe, the USA and Asia. About 60% of the book concentrates on theoretical and computational themes whilst 40% is on topics of interest to experimental chemists. Specific themes covered include structure, topology, modelling and prediction, the role of boron clusters in synthetic chemistry and catalysis, as medical agents when acting as inhibitors of HIV protease and carbonic anhydrases.
The book focuses on two concurrent experimental therapies in cancer treatment known as boron neutron capture therapy (BNCT) and gadolinium neutron capture therapy (GdNCT) using a variety of boron- and gadolinium-based compounds. Some of the gadolinium compounds serve the dual purpose as being MRI contrast agents and GdNCT agents. The book describes why BNCT & GdNCT were not at the forefront of the clinical trials during the past seven to eight decades since the discovery of neutrons by John Chadwick in 1932 and how the latest development in the synthesis of target boron- and gadolinium-based drugs has turned the area into the hottest one worthy of further investigation with the new clinical trials in the USA and elsewhere.