Download Free Textbook Of Tensor Calculus Differential Geometry And Their Applications Book in PDF and EPUB Free Download. You can read online Textbook Of Tensor Calculus Differential Geometry And Their Applications and write the review.

Primarily intended for the undergraduate and postgraduate students of mathematics, this textbook covers both geometry and tensor in a single volume. This book aims to provide a conceptual exposition of the fundamental results in the theory of tensors. It also illustrates the applications of tensors to differential geometry, mechanics and relativity. Organized in ten chapters, it provides the origin and nature of the tensor along with the scope of the tensor calculus. Besides this, it also discusses N-dimensional Riemannian space, characteristic peculiarity of Riemannian space, intrinsic property of surfaces, and properties and transformation of Christoffel’s symbols. Besides the students of mathematics, this book will be equally useful for the postgraduate students of physics. KEY FEATURES : Contains 250 worked out examples Includes more than 350 unsolved problems Gives thorough foundation in Tensors
DIVProceeds from general to special, including chapters on vector analysis on manifolds and integration theory. /div
This book is intended to serve as a Textbook for Undergraduate and Post - graduate students of Mathematics. It will be useful to the researchers working in the field of Differential geometry and its applications to general theory of relativity and other applied areas. It will also be helpful in preparing for the competitive examinations like IAS, IES, NET, PCS, and UP Higher Education exams. The text starts with a chapter on Preliminaries discussing basic concepts and results which would be taken for general later in the subsequent chapters of this book. This is followed by the Study of the Tensors Algebra and its operations and types, Christoffel's symbols and its properties, the concept of covariant differentiation and its properties, Riemann's symbols and its properties, and application of tensor in different areas in part – I and the study of the Theory of Curves in Space, Concepts of a Surface and Fundamental forms, Envelopes and Developables, Curvature of Surface and Lines of Curvature, Fundamental Equations of Surface Theory, Theory of Geodesics, Differentiable Manifolds and Riemannian Manifold and Application of Differential Geometry in Part –II. KEY FEATURES: Provides basic Concepts in an easy to understand style; Presentation of the subject in a natural way; Includes a large number of solved examples and illuminating illustrations; Exercise questions at the end of the topic and at the end of each chapter; Proof of the theorems are given in an easy to understand style; Neat and clean figures are given at appropriate places; Notes and remarks are given at appropriate places.
Incisive, self-contained account of tensor analysis and the calculus of exterior differential forms, interaction between the concept of invariance and the calculus of variations. Emphasis is on analytical techniques. Includes problems.
This book is based on the experience of teaching the subject by the author in Russia, France, South Africa and Sweden. The author provides students and teachers with an easy to follow textbook spanning a variety of topics on tensors, Riemannian geometry and geometric approach to partial differential equations. Application of approximate transformation groups to the equations of general relativity in the de Sitter space simplifies the subject significantly.
An introductory textbook on the differential geometry of curves and surfaces in 3-dimensional Euclidean space, presented in its simplest, most essential form. With problems and solutions. Includes 99 illustrations.
This book presents tensors and differential geometry in a comprehensive and approachable manner, providing a bridge from the place where physics and engineering mathematics end, and the place where tensor analysis begins. Among the topics examined are tensor analysis, elementary differential geometry of moving surfaces, and k-differential forms. The book includes numerous examples with solutions and concrete calculations, which guide readers through these complex topics step by step. Mindful of the practical needs of engineers and physicists, book favors simplicity over a more rigorous, formal approach. The book shows readers how to work with tensors and differential geometry and how to apply them to modeling the physical and engineering world. The authors provide chapter-length treatment of topics at the intersection of advanced mathematics, and physics and engineering: • General Basis and Bra-Ket Notation • Tensor Analysis • Elementary Differential Geometry • Differential Forms • Applications of Tensors and Differential Geometry • Tensors and Bra-Ket Notation in Quantum Mechanics The text reviews methods and applications in computational fluid dynamics; continuum mechanics; electrodynamics in special relativity; cosmology in the Minkowski four-dimensional space time; and relativistic and non-relativistic quantum mechanics. Tensor Analysis and Elementary Differential Geometry for Physicists and Engineers benefits research scientists and practicing engineers in a variety of fields, who use tensor analysis and differential geometry in the context of applied physics, and electrical and mechanical engineering. It will also interest graduate students in applied physics and engineering.
This textbook is distinguished from other texts on the subject by the depth of the presentation and the discussion of the calculus of moving surfaces, which is an extension of tensor calculus to deforming manifolds. Designed for advanced undergraduate and graduate students, this text invites its audience to take a fresh look at previously learned material through the prism of tensor calculus. Once the framework is mastered, the student is introduced to new material which includes differential geometry on manifolds, shape optimization, boundary perturbation and dynamic fluid film equations. The language of tensors, originally championed by Einstein, is as fundamental as the languages of calculus and linear algebra and is one that every technical scientist ought to speak. The tensor technique, invented at the turn of the 20th century, is now considered classical. Yet, as the author shows, it remains remarkably vital and relevant. The author’s skilled lecturing capabilities are evident by the inclusion of insightful examples and a plethora of exercises. A great deal of material is devoted to the geometric fundamentals, the mechanics of change of variables, the proper use of the tensor notation and the discussion of the interplay between algebra and geometry. The early chapters have many words and few equations. The definition of a tensor comes only in Chapter 6 – when the reader is ready for it. While this text maintains a consistent level of rigor, it takes great care to avoid formalizing the subject. The last part of the textbook is devoted to the Calculus of Moving Surfaces. It is the first textbook exposition of this important technique and is one of the gems of this text. A number of exciting applications of the calculus are presented including shape optimization, boundary perturbation of boundary value problems and dynamic fluid film equations developed by the author in recent years. Furthermore, the moving surfaces framework is used to offer new derivations of classical results such as the geodesic equation and the celebrated Gauss-Bonnet theorem.
The purpose of this book is to provide core material in nonlinear analysis for mathematicians, physicists, engineers, and mathematical biologists. The main goal is to provide a working knowledge of manifolds, dynamical systems, tensors, and differential forms. Some applications to Hamiltonian mechanics, fluid me chanics, electromagnetism, plasma dynamics and control thcory arc given in Chapter 8, using both invariant and index notation. The current edition of the book does not deal with Riemannian geometry in much detail, and it does not treat Lie groups, principal bundles, or Morse theory. Some of this is planned for a subsequent edition. Meanwhile, the authors will make available to interested readers supplementary chapters on Lie Groups and Differential Topology and invite comments on the book's contents and development. Throughout the text supplementary topics are given, marked with the symbols ~ and {l:;J. This device enables the reader to skip various topics without disturbing the main flow of the text. Some of these provide additional background material intended for completeness, to minimize the necessity of consulting too many outside references. We treat finite and infinite-dimensional manifolds simultaneously. This is partly for efficiency of exposition. Without advanced applications, using manifolds of mappings, the study of infinite-dimensional manifolds can be hard to motivate.