Download Free Template Syntheses And Structural Studies Of Transition Metal Complexes Of Macrocyclic Ligands Book in PDF and EPUB Free Download. You can read online Template Syntheses And Structural Studies Of Transition Metal Complexes Of Macrocyclic Ligands and write the review.

This book contains an overview of complex formation by macrocyclic ligand systems. The study of macrocyclic chemistry represents a major area of activity which impinges on a range of other areas in both chemistry and biochemistry. The field has characteristically yielded many interesting and unusual compounds. The text discusses the structures and properties of macrocyclic compounds; the synthesis of macrocycles; polyether crown and related systems; metal-ion and molecular recognition (host-guest chemistry); as well as kinetic, thermodynamic and electrochemical aspects of a range of macrocyclic systems. A discussion of the different categories of naturally occurring macrocycles is also included. Specialist and non-specialist alike will find this a useful text. Apart from serving as a convenient reference for established workers in the field, it should also prove useful to new graduate students as well as to researchers from other areas who seek a general introduction to the subject. The topics discussed also provide a suitable basis for a senior undergraduate or graduate course in macrocyclic chemistry and inorganic complexes.
This book surveys the relatively new area of the synthesis of organic ligands when metal ions act as a template. In the last fifty years this field has undergone an explosive development, marked by a great amount of literature. The material in the book has been arranged according to the type of chemical reaction involved. In this frame, the basic principles of metal template reactions and the shape of the molecules are considered. Designed to satisfy the demands of students, young researchers doing their PhDs, and those working in the field of coordination chemistry, the book details the role of the metal ions and the specific properties of the formed complexes.Metal Mediated Template Synthesis of Ligands offers a comprehensive analysis with wide-ranging references and provides an extensive overview of research on metal-directed organic ligands over the past five decades.
Bioinorganic Chemistry of Copper focuses on the vital role of copper ions in biology, especially as an essential metalloenzyme cofactor. The book is highly interdisciplinary in its approach--the outstanding list of contributors includes coordination chemists, biochemists, biophysicists, and molecular biologists. Chapters are grouped into major areas of research interest in inorganic copper chemistry, spectroscopy, oxygen chemistry, biochemistry, and molecular biology. The book also discusses basic research of great potential importance to pharmaceutical scientists. This book is based on the first Johns Hopkins University Copper Symposium, held in August 1992. Researchers in chemistry, biochemistry, molecular biology, and medicinal chemistry will find it to be an essential reference on its subject.
Chemists have been aware of the existence of coordination compounds con taining organic macrocyclic ligands since the first part of this century ; however, only during the past few years have they expanded research into the chemistry of these compounds. The expansion was initiated in the early 1960s by the synthesis and characterization of compounds containing some new macrocyclic ligands. The synthesis of compounds which may serve as model systems for some natural products containing large rings as ligands provided the main goal for the early expansion of research effort; indeed, a recurrent theme behind much of the reported chemistry has been the analogy between synthetic macrocyclic compounds and many natural-product systems. More recently, the emphases of reported research have ranged over the whole spectrum of chemistry, and the number of publications that discuss macrocyclic chemistry has increased at a dramatic rate. The completed research has been reported in a variety of journals throughout the world but there has been no previous attempt to bring the major developments together under one cover. This book, therefore, attempts to satisfy the need for a single source in which there is both a collection and a correlation of information concerning the coordination chemistry of macrocyclic compounds. The chapters in this book discuss various aspects of macrocyclic chemistry, and while these chapters as a whole constitute an in-depth survey of the state-of the-art of the field, each chapter is written as a complete unit.
Inorganic and Bio-Inorganic Chemistry is the component of Encyclopedia of Chemical Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The Theme on Inorganic and Bio-Inorganic Chemistry in the Encyclopedia of Chemical Sciences, Engineering and Technology Resources deals with the discipline which studies the chemistry of the elements of the periodic table. It covers the following topics: From simple to complex compounds; Chemistry of metals; Inorganic synthesis; Radicals reactions with metal complexes in aqueous solutions; Magnetic and optical properties; Inorganometallic chemistry; High temperature materials and solid state chemistry; Inorganic biochemistry; Inorganic reaction mechanisms;Homogeneous and heterogeneous catalysis; Cluster and polynuclear compounds; Structure and bonding in inorganic chemistry; Synthesis and spectroscopy of transition metal complexes; Nanosystems;Computational inorganic chemistry; Energy and inorganic chemistry. These two volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs
Coordination compounds have been well-known for their wide variety of applications for over a century, as well as enhancing the researcher’s interest and concern in evaluating their action mechanism. It is certainly one of the most intensely discussed research topics. Coordination compounds involve different metal-ion-ligand phenomenon. The involved metal ions play a significant role in structural association and functioning of several processes in the genetic and metabolism system. In recent years, Schiff base ligands have gained significant interest and received a keen interest of many researchers. Schiff’s base ligands have been recognized to hold a wide variety of biological and medicinal activities due to the presence of donor atoms. They have proved exceptional pharmalogical actions such as antimicrobial, anti-tuberclosis, antiplatelet, antidiabetic, antiarthritis, antioxidant, anti-inflammatory, anticancer, antiviral, antimalarial, and analgesic. These biologically active Schiff base ligands have also been shown to inhibit enzyme mobilization and, when bound to a metal ion, exhibit enhanced biological activity, making them useful in a number of fields. As a result, metal complexes of Schiff base ligands are gaining popularity due to their unique properties and functionalities. Schiff base complex-based research for educational and industrial purposes is booming, and the number of publications is gradually increasing. Despite these interests, there is currently no detailed book on Schiff base metal complexes that covers the structures, biological activities, and other non-biological perspectives. This book delves into the structures of Schiff base metal complexes, which are critical in assessing the biological viability of any complex. It also highlights their biological significance in pharma and drug discovery like antibacterial, antifungal, anticancer, anti-inflammatory, anti-arthritis, anti-diabetic, antioxidants, anti-proliferative, antitumor, anticancer, antiviral. The fundamentals of metal complexes are described, as well as an up-to-date outline of developments in synthesis, characterization methods, properties- chemical, thermal, optical, structural, and applications. This book also discusses the other applications of Schiff base metal complexes: as sensor (luminescent, electrochemical, and biosensor), as pigments in dying and paint industries, as photocatalyst to improve the degradation rate. Features : This book would be useful for academia, researchers and engineers working in the area of Schiff base and their metal complexes. This book will give an in-depth account of the properties of Schiff base and their metal complexes. This book will discuss the details of synthesis methods for Schiff base and their metal complexes. This book will cover emerging trends in the use of Schiff base metal complexes in the industry. This book will provide an overview of the wider biological applications of Schiff base metal complexes
Each chapter of Phosphorus Compounds: Advanced Tools in Catalysis and Material Sciences have been carefully selected by the editors in order to represent a state-of-the-art overview of how phosphorus chemistry can provide solutions in various fields of applications. The editors have assembled an international array of world-renowned scientists and each chapter is written by experts in the fields of synthetic chemistry, homogeneous catalysis, dendrimers, theoretical calculations, materials science, and medicinal chemistry with a special focus on the chemistry of phosphorus compounds. Phosphorus Compounds: Advanced Tools in Catalysis and Material Sciences is of interest to a general readership ranging from advanced university course students to experts in academia and industry.
NMR of Newly Accessible Nuclei, Volume 1: Chemical and Biochemical Applications is a 10-chapter text that explores the properties, advantages, developments, and chemical and biochemical applications of NMR technique. This book describes first the operation of an NMR spectrometer under its two aspects, namely, the instrumental and the computational aspects. The next chapters are devoted to some of the most important pulse sequences. The discussion then shifts to the various factors determining the position of the observed absorption and those responsible for the various relaxation processes. The last chapters deal with the specific applications of NMR, including in cation salvation, calcium-binding proteins, polyelectrolyte systems, halogens, and antibiotic ionophores. This book is of value to inorganic and analytical chemists, and biophysicists.