Download Free Temperature Aware Design And Management For 3d Multi Core Architectures Book in PDF and EPUB Free Download. You can read online Temperature Aware Design And Management For 3d Multi Core Architectures and write the review.

Temperature-Aware Design and Management for 3D Multi-Core Architectures surveys recent advances in temperature-aware 3D MPSoC considerations. It explores the recent advanced cooling strategies, thermal modeling frameworks, design-time optimizations and run-time thermal management schemes that are primarily targeted for 3D MPSoCs.
Power consumption becomes the most important design goal in a wide range of electronic systems. There are two driving forces towards this trend: continuing device scaling and ever increasing demand of higher computing power. First, device scaling continues to satisfy Moore’s law via a conventional way of scaling (More Moore) and a new way of exploiting the vertical integration (More than Moore). Second, mobile and IT convergence requires more computing power on the silicon chip than ever. Cell phones are now evolving towards mobile PC. PCs and data centers are becoming commodities in house and a must in industry. Both supply enabled by device scaling and demand triggered by the convergence trend realize more computation on chip (via multi-core, integration of diverse functionalities on mobile SoCs, etc.) and finally more power consumption incurring power-related issues and constraints. Energy-Aware System Design: Algorithms and Architectures provides state-of-the-art ideas for low power design methods from circuit, architecture to software level and offers design case studies in three fast growing areas of mobile storage, biomedical and security. Important topics and features: - Describes very recent advanced issues and methods for energy-aware design at each design level from circuit and architecture to algorithm level, and also covering important blocks including low power main memory subsystem and on-chip network at architecture level - Explains efficient power conversion and delivery which is becoming important as heterogeneous power sources are adopted for digital and non-digital parts - Investigates 3D die stacking emphasizing temperature awareness for better perspective on energy efficiency - Presents three practical energy-aware design case studies; novel storage device (e.g., solid state disk), biomedical electronics (e.g., cochlear and retina implants), and wireless surveillance camera systems. Researchers and engineers in the field of hardware and software design will find this book an excellent starting point to catch up with the state-of-the-art ideas of low power design.
Physical Design for 3D Integrated Circuits reveals how to effectively and optimally design 3D integrated circuits (ICs). It also analyzes the design tools for 3D circuits while exploiting the benefits of 3D technology. The book begins by offering an overview of physical design challenges with respect to conventional 2D circuits, and then each chapter delivers an in-depth look at a specific physical design topic. This comprehensive reference: Contains extensive coverage of the physical design of 2.5D/3D ICs and monolithic 3D ICs Supplies state-of-the-art solutions for challenges unique to 3D circuit design Features contributions from renowned experts in their respective fields Physical Design for 3D Integrated Circuits provides a single, convenient source of cutting-edge information for those pursuing 2.5D/3D technology.
This handbook offers a comprehensive review of the state-of-the-art research achievements in the field of data centers. Contributions from international, leading researchers and scholars offer topics in cloud computing, virtualization in data centers, energy efficient data centers, and next generation data center architecture. It also comprises current research trends in emerging areas, such as data security, data protection management, and network resource management in data centers. Specific attention is devoted to industry needs associated with the challenges faced by data centers, such as various power, cooling, floor space, and associated environmental health and safety issues, while still working to support growth without disrupting quality of service. The contributions cut across various IT data technology domains as a single source to discuss the interdependencies that need to be supported to enable a virtualized, next-generation, energy efficient, economical, and environmentally friendly data center. This book appeals to a broad spectrum of readers, including server, storage, networking, database, and applications analysts, administrators, and architects. It is intended for those seeking to gain a stronger grasp on data center networks: the fundamental protocol used by the applications and the network, the typical network technologies, and their design aspects. The Handbook of Data Centers is a leading reference on design and implementation for planning, implementing, and operating data center networks.
"This book covers a great variety of topics such as materials, environment, electronics, and computing, offering a vital source of information detailing the latest architectures, frameworks, methodologies, and research on energy-aware systems and networking for sustainable initiatives"--
This book constitutes the refereed proceedings of the 21st International Conference on Integrated Circuit and System Design, PATMOS 2011, held in Madrid, Spain, in September 2011. The 34 revised full papers presented were carefully reviewed and selected from numerous submissions. The paper feature emerging challenges in methodologies and tools for the design of upcoming generations of integrated circuits and systems and focus especially on timing, performance and power consumption as well as architectural aspects with particular emphasis on modeling, design, characterization, analysis and optimization.
3D integration is an emerging technology for the design of many-core microprocessors and memory integration. This book, Advances in 3D Integrated Circuits and Systems, is written to help readers understand 3D integrated circuits in three stages: device basics, system level management, and real designs.Contents presented in this book include fabrication techniques for 3D TSV and 2.5D TSI; device modeling; physical designs; thermal, power and I/O management; and 3D designs of sensors, I/Os, multi-core processors, and memory.Advanced undergraduates, graduate students, researchers and engineers may find this text useful for understanding the many challenges faced in the development and building of 3D integrated circuits and systems.
This book covers various aspects of optimization in design and testing of Network-on-Chip (NoC) based multicore systems. It gives a complete account of the state-of-the-art and emerging techniques for near optimal mapping and test scheduling for NoC-based multicores. The authors describe the use of the Integer Line Programming (ILP) technique for smaller benchmarks and a Particle Swarm Optimization (PSO) to get a near optimal mapping and test schedule for bigger benchmarks. The PSO-based approach is also augmented with several innovative techniques to get the best possible solution. The tradeoff between performance (communication or test time) of the system and thermal-safety is also discussed, based on designer specifications. Provides a single-source reference to design and test for circuit and system-level approaches to (NoC) based multicore systems; Gives a complete account of the state-of-the-art and emerging techniques for near optimal mapping and test scheduling in (NoC) based multicore systems; Organizes chapters systematically and hierarchically, rather than in an ad hoc manner, covering aspects of optimization in design and testing of Network-on-Chip (NoC) based multicore systems.
From basic architecture, interconnection, and parallelization to power optimization, this book provides a comprehensive description of emerging multicore systems-on-chip (MCSoCs) hardware and software design. Highlighting both fundamentals and advanced software and hardware design, it can serve as a primary textbook for advanced courses in MCSoCs design and embedded systems. The first three chapters introduce MCSoCs architectures, present design challenges and conventional design methods, and describe in detail the main building blocks of MCSoCs. Chapters 4, 5, and 6 discuss fundamental and advanced on-chip interconnection network technologies for multi and many core SoCs, enabling readers to understand the microarchitectures for on-chip routers and network interfaces that are essential in the context of latency, area, and power constraints. With the rise of multicore and many-core systems, concurrency is becoming a major issue in the daily life of a programmer. Thus, compiler and software development tools are critical in helping programmers create high-performance software. Programmers should make sure that their parallelized program codes will not cause race condition, memory-access deadlocks, or other faults that may crash their entire systems. As such, Chapter 7 describes a novel parallelizing compiler design for high-performance computing. Chapter 8 provides a detailed investigation of power reduction techniques for MCSoCs at component and network levels. It discusses energy conservation in general hardware design, and also in embedded multicore system components, such as CPUs, disks, displays and memories. Lastly, Chapter 9 presents a real embedded MCSoCs system design targeted for health monitoring in the elderly.
The five-volume set LNCS 6782 - 6786 constitutes the refereed proceedings of the International Conference on Computational Science and Its Applications, ICCSA 2011, held in Santander, Spain, in June 2011. The five volumes contain papers presenting a wealth of original research results in the field of computational science, from foundational issues in computer science and mathematics to advanced applications in virtually all sciences making use of computational techniques. The topics of the fully refereed papers are structured according to the five major conference themes: geographical analysis, urban modeling, spatial statistics; cities, technologies and planning; computational geometry and applications; computer aided modeling, simulation, and analysis; and mobile communications.