Download Free Tables Related To Light Scattering In A Turbid Atmosphere Book in PDF and EPUB Free Download. You can read online Tables Related To Light Scattering In A Turbid Atmosphere and write the review.

The tables present the results of computations of the intensity and the degree of polarization of sky radiation and radiation scattered by a unit volume of air containing natural aerosols. The tabulated data are based upon new values of the scattering functions i sub 1 and i sub 2 and the scattering cross sections k, derived using the Mie theory with m = 1.5. In the case of primary scattering of radiation, the results are valid for a turbid atmosphere. The tables of the scattering coefficients and optical thickness, the absolute scattering functions, the intensities, and the degrees of polarization are computed for various wavelengths between 0.4 and 1.2 microns and for discrete scattering angles between 0 degrees and 180 degrees. Aerosol size distributions of the form dn(r) = c.r/v dlogr, with v = 2.5, 3.0, and 4.0, are assumed. The lower and upper limits for the size range were chosen as r sub 1 = 0.04, 0.06, and 0.08 micron and r sub 2 = 3, 5, and 10 microns respectively. (Author).
The tables present the results of computations of the intensity and the degree of polarization of sky radiation and radiation scattered by a unit volume of air containing natural aerosols. The tabulated data are based upon new values of the scattering functions i sub 1 and i sub 2 and the scattering cross sections k, derived using the Mie theory with m = 1.5. In the case of primary scattering of radiation, the results are valid for a turbid atmosphere. The tables of the scattering coefficients and optical thickness, the absolute scattering functions, the intensities, and the degrees of polarization are computed for various wavelengths between 0.4 and 1.2 microns and for discrete scattering angles between 0 degrees and 180 degrees. Aerosol size distributions of the form dn(r) = c.r/v dlogr, with v = 2.5, 3.0, and 4.0, are assumed. The lower and upper limits for the size range were chosen as r sub 1 = 0.04, 0.06, and 0.08 micron and r sub 2 = 3, 5, and 10 microns respectively. (Author).
The tables present the results of computations of the intensity and the degree of polarization of sky radiation and radiation scattered by a unit volume of air containing natural aerosols. The tabulated data are based upon new values of the scattering functions i sub 1 and i sub 2 and the scattering cross sections k, derived using the Mie theory with m = 1.5. In the case of primary scattering of radiation, the results are valid for a turbid atmosphere. The tables of the scattering coefficients and optical thickness, the absolute scattering functions, the intensities, and the degrees of polarization are computed for various wavelengths between 0.4 and 1.2 microns and for discrete scattering angles between 0 and 180 degrees. Aerosol size distributions of the form dn(r) = c.r/v dlogr, with v = 2.5, 3.0, and 4.0, are assumed. The lower and upper limits for the size range were chosen as r sub 1 = 0.04, 0.06, and 0.08 micron and r sub 2 = 3,5, and 10 microns respectively. (Author).
The tables present the results of computations of the intensity and the degree of polarization of sky radiation and radiation scattered by a unit volume of air containing natural aerosols. The tabulated data are based upon new values of the scattering functions i sub 1 and i sub 2 and the scattering cross sections k, derived using the Mie theory with m = 1.5. In the case of primary scattering of radiation, the results are valid for a turbid atmosphere. The tables of the scattering coefficients and optical thickness, the absolute scattering functions, the intensities, and the degrees of polarization are computed for various wavelengths between 0.4 and 1.2 microns and for discrete scattering angles between 0 degrees and 180 degrees. Aerosol size distributions of the form dn(r) = c.r/v dlogr, with v = 2.5, 3.0, and 4.0, are assumed. The lower and upper limits for the size range were chosen as r sub 1 = 0.04, 0.06, and 0.08 micron and r sub 2 = 3, 5, and 10 microns respectively. (Author)
The tables present the results of computations of the intensity and the degree of polarization of sky radiation and radiation scattered by a unit volume of air containing natural aerosols. The tabulated data are based upon new values of the scattering functions i sub 1 and i sub 2 and the scattering cross sections k, derived using the Mie theory with m = 1.5. In the case of primary scattering of radiation, the results are valid for a turbid atmosphere. The tables of the scattering coefficients and optical thickness, the absolute scattering functions, the intensities, and the degrees of polarization are computed for various wavelengths between 0.4 and 1.2 microns and for discrete scattering angles between 0 and 180 degrees. Aerosol size distributions of the form dn(r) = c.r/v dlogr, with v = 2.5, 3.0, and 4.0, are assumed. The lower and upper limits for the size range were chosen as r sub 1 = 0.04, 0.06, and 0.08 micron and r sub 2 = 3,5, and 10 microns respectively. (Author)