Download Free Systems With Hysteresis Book in PDF and EPUB Free Download. You can read online Systems With Hysteresis and write the review.

Hysteresis phenomena are common in numerous physical, mechanical, ecological and biological systems. They reflect memory effects and process irreversibility. The use of hysteresis operators (hysterons) offers an approach to macroscopic modelling of the dynamics of phase transitions and rheological systems. The applications cover processes in electromagnetism, elastoplasticity and population dynamics in particular. Hysterons are also typical elements of control systems where they represent thermostats and other discontinuous controllers with memory. The book offers the first systematic mathematical treatment of hysteresis nonlinearities. Construction procedures are set up for hysterons in various function spaces, in continuous and discontinuous cases. A general theory of variable hysterons is developed, including identification and stability questions. Both deterministic and non-deterministic hysterons are considered, with applications to the study of feedback systems. Many of the results presented - mostly obtained by the authors and their scientific group - have not been published before. The book is essentially self contained and is addressed both to researchers and advanced students.
Hysterisis is a system property that is fundamental to a range of engineering applications as the components of systems with hysterisis are able to react differently to different forces applied to them. Control theory is used to model these complex systems and cause them to behave in the desired manner; the Bouc-Wen model is a well-known semi-physical model that is used extensively to describe the hysterisis of systems in the areas of smart structures and civil engineering. The Bouc-Wen model for system hysterisis has increased in popularity due to its capability of capturing in an analytical form a range of shapes of hysteretic cycles that match the behaviour of a wide class of hysteretic systems. “Systems with Hysterisis: Analysis, Identification and Control using the Bouc-Wen Model” deals with the analysis, identification and control of these systems, and offers a comprehensive and self-contained framework for the study of the Bouc-Wen model. Includes the latest techniques for modelling smart structures and materials Provides a rigorous mathematical treatment of the subject along with practical comments, numerical solutions and a case study of magentorheological (MR) dampers. Begins by analysing the compatibility of the Bouc-Wen model with the laws of physics, and continues to cover the relationship between the model parameters and hysterisis loop, identification of the model parameters and control of systems that include a hysteretic part described by the Bouc-Wen model. Includes case studies covering the identification and control of smart material transducers for use in automotive, aerospace and structural control Systems with Hysterisis: Analysis, Identification and Control using the Bouc-Wen Model offers an invaluable source of ideas, concepts and insights for engineers, researchers, lecturers and senior/ postgraduate students involved in the research, design and development of smart structures and related areas within civil and mechanical engineering. It will also be of interest to readers involved in the wider disciplines of electrical & control engineering, applied mathematics, applied physics and material science.
Modelling and Precision Control of Systems with Hysteresis covers the piezoelectric and other smart materials that are increasingly employed as actuators in precision engineering, from scanning probe microscopes (SPMs) in life science and nano-manufacturing, to precision active optics in astronomy, including space laser communication, space imaging cameras, and the micro-electro-mechanical systems (MEMS). As smart materials are known for having hysteretic dynamics, it is necessary to overcome issues with a broadband range of frequencies. This book offers both the mathematical tools for modeling the systems and applications, including complete case studies and source code for the experiments to help both academics and researchers in the industry to achieve precision in the control of Smart Actuator systems. - Provides a comprehensive identification of typical complex hysteresis - Presents control algorithm design for systems with hysteresis - Contain numerous real life examples and two complete case studies - Source code to examples are provided
The authors present a completely new and highly application-oriented field of nonlinear analysis. The work covers the theory of non-smooth input-output systems and presents various methods to non-standard applications in mathematics and physics. A particular focus lies on hysteresis and relay phenomena, electric circuits with diode nonlinearities, and biological systems with constraints.
The study of complex hysteresis problems has become increasingly important in recent years, since the hysteresis phenomenon affects significantly the decisions that have to be rendered in a wide range of real-world practical applications. For example, the so-called hysteresis effects may influence substantially some fields not directly related to the natural sciences such as finance, economy, or fiscal policy. In addition, such phenomenon is also typically present in many engineering and physics applications of interest such as in magnetism, spin-valve technology, semiconductors, surface physics, aeronautical and civil engineering aerodynamics, complex battery systems, biology, etc. This book focuses on the most recent attempts for modeling a diverse variety of complex hysteresis problems faced in economics, engineering, and physics. The chapters of this book provide a self-contained, rigorous, and clear treatment of the different types and sources of hysteresis under a large spectrum of applications. The book also highlights how stochastic control and other mathematical tools as well as econometric techniques can be applied for analyzing the complex properties of hysteresis problems. This authoritative book is a definitive guide on how to understand the newest designs for modeling hysteresis in highly complex systems and thus it will be an essential reading for graduate students and researchers in economics, engineering, and physics.
The occurrence of hysteresis phenomena has been traditionally associated with mechanical and magnetic properties of materials. However, recent studies on the dynamics of biological processes suggest switch-like behavior that could be described by mathematical models of hysteresis. This book presents the milestones and perspectives of biological hysteresis and provides a comprehensive and application-oriented introduction to this subject. The target audience primarily comprises researchers but the book may also be beneficial for graduate students.
Volume 1 covers: * Mathematical models * Differential equations * Stochastic aspects of hysteresis * Binary detection using hysteresis * Models of unemployment in economics Volume 2 covers: * Physical models of magnetic hysteresis * All aspects of magnetisation dynamics Volume 3 covers: * Hysteresis phenomena in materials * Over 2100 pages, rich with supporting illustrations, figures and equations * Contains contributions from an international list of authors, from a wide-range of disciplines * Covers all aspects of hysteresis - from differential equations, and binary detection, to models of unemployment and magnetisation dynamics.
This book provides a comprehensive treatment of the physics of hysteresis in magnetism and of the mathematical tools used to describe it. Hysteresis in Magnetism discusses from a unified viewpoint the relationsof hysteresis to Maxwells equations, equilibrium and non-equilibrium thermodynamics, non-linear system dynamics, micromagnetics, and domain theory. These aspects are then applied to the interpretation of magnetization reversal mechanisms: coherent rotation and switching in magnetic particles, stochastic domain wall motion and the Barkhausen effect, coercivity mechanisms and magnetic viscosity, rate-dependent hysteresis and eddy-current losses. The book emphasizes the connection between basic physical ideas and phenomenological models of interest to applications, and, in particular, to the conceptual path going from Maxwells equations and thermodynamics to micromagnetics and to Preisach hysteresis modeling. - The reader will get insight into the importance and role of hysteresis in magnetism; In particular, he will learn: - which are the fingerprints of hysteresis in magnetism - which are the situations in which hysteresis may appear - how to describe mathematically these situations - how to apply these descriptions to magnetic materials - how to interpret and predict magnetic hysteresis phenomena observed experimentally
Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics reports some of the latest research on modeling, identification and adaptive control for systems with nonsmooth dynamics (e.g., backlash, dead zone, friction, saturation, etc). The authors present recent research results for the modelling and control designs of uncertain systems with nonsmooth dynamics, such as friction, dead-zone, saturation and hysteresis, etc., with particular applications in servo systems. The book is organized into 19 chapters, distributed in five parts concerning the four types of nonsmooth characteristics, namely friction, dead-zone, saturation and hysteresis, respectively. Practical experiments are also included to validate and exemplify the proposed approaches. This valuable resource can help both researchers and practitioners to learn and understand nonlinear adaptive control designs. Academics, engineers and graduate students in the fields of electrical engineering, control systems, mechanical engineering, applied mathematics and computer science can benefit from the book. It can be also used as a reference book on adaptive control for servo systems for students with some background in control engineering. - Explains the latest research outputs on modeling, identification and adaptive control for systems with nonsmooth dynamics - Provides practical application and experimental results for robotic systems, and servo motors
The purpose of this book is to describe in sufficient detail the mathematical models of hysteresis nonlinearities with "nonlocal memories. " The distinct feature of these nonlinearities is that their future states depend on past histories of input variations. It turns out that memories of hysteresis nonlinearities are quite selective. Indeed, experiments show that only some past input extrema (not the entire input variations) leave their marks upon future states of hysteresis nonlinearities. Thus, special mathematical tools are needed to describe nonlocal selective memories of hysteresis nonlinearities. The origin of such tools can be traced back to the landmark paper of Preisach. The book is primarily concerned with Preisach-type models of hysteresis. All these models have a common generic feature; they are constructed as superposi tions of simplest hysteresis nonlinearities-rectangular loops. The discussion is by and large centered around the following topics: various generalizations and extensions of the classical Preisach model (with special emphasis on vector generalizations), finding of necessary and sufficient conditions for the represen tation of actual hysteresis nonlinearities by various Preisach-type models, solution of identification problems for these models, and numerical implementa tion and experimental testing of Preisach-type models. Although the study of Preisach-type models constitutes the main subject of the book, some effort is also made to establish some interesting connections between these models and such topics as the critical state model for superconducting hysteresis, the classi cal Stoner-Wohlfarth model for vector magnetic hysteresis, thermal activation type models for viscosity, magnetostrictive hysteresis and neural networks.