Download Free System Theoretic Methods In Economic Modelling Ii Book in PDF and EPUB Free Download. You can read online System Theoretic Methods In Economic Modelling Ii and write the review.

System-Theoretic Methods in Economic Modelling II complements the editor's earlier volume, bringing together current research efforts integrating system-theoretic concepts with economic modelling processes. The range of papers presented here goes beyond the long-accepted control-theoretic contributions in dynamic optimization and focuses on system-theoretic methods in the construction as well as the application stages of economic modelling. This volume initiates new and intensifies existing debate between researchers and practitioners within and across the disciplines involved, with the objective of encouraging interdisciplinary research. The papers are split into four sections - estimation, filtering and smoothing problems in the context of state space modelling; applying the state space concept to financial modelling; modelling rational expectation; and a miscellaneous section including a follow-up case study by Tse and Khilnani on their integrated system model for a fishery management process, which featured in the first volume.
The value of applying system-theoretic concepts to economic modelling problems arises from the fact that it offers a unifying framework for modelling dynamic systems. In addition to offering this powerful conceptual framework, it provides a wide range of tools useful in applied work. System-theoretic techniques enter predominantly two stages of economic modelling efforts: the stage of model construction and the stage of model application in accordance with the modelling. The objective of this and subsequent volumes on System-Theoretic Methods in Economic Modelling I is to initiate and/or intensify dialogues between researchers and practitioners within and across the disciplines involved. This first volume brings together papers exhibiting a wide range of system-theoretic techniques and applications to economic problems. The papers have been divided into two groups, following roughly--but not necessarily--the above classification into the construction and application stages of economic modelling. The papers in the first group focus on the identification of dynamic and static systems, while the papers in the second group address dynamic optimization problems.
Model Building is the most fruitful area of economics, designed to solve real-world problems using all available methods such as mathematical, computational and analytical, without distinction. Wherever necessary, we should not be reluctant to develop new techniques, whether mathematical or computational. That is the philosophy of this volume. The volume is divided into three distinct parts: Methods, Theory and Applications. The Methods section is in turn subdivided into Mathematical Programming and Econometrics and Adaptive Control System, which are widely used in econometric analysis. The impacts of fiscal policy in a regime with independent monetary authority and dynamic models of environmental taxation are considered. In the section on "Modelling Business Organization," a model of a Japanese organization is presented. Furthermore, a model suitable for an efficient budget management of a health service unit by applying goal programming method is analyzed, taking into account various socio-economic factors. This is followed by a section on "Modelling National Economies," in which macroeconometric models for the EU member countries are analyzed, to find instruments that stabilize inflation with coordinated action.
Comprises lectures given at Tel Aviv University and Oxford University in 1990.
In financially constrained health systems across the world, increasing emphasis is being placed on the ability to demonstrate that health care interventions are not only effective, but also cost-effective. This book deals with decision modelling techniques that can be used to estimate the value for money of various interventions including medical devices, surgical procedures, diagnostic technologies, and pharmaceuticals. Particular emphasis is placed on the importance of the appropriate representation of uncertainty in the evaluative process and the implication this uncertainty has for decision making and the need for future research. This highly practical guide takes the reader through the key principles and approaches of modelling techniques. It begins with the basics of constructing different forms of the model, the population of the model with input parameter estimates, analysis of the results, and progression to the holistic view of models as a valuable tool for informing future research exercises. Case studies and exercises are supported with online templates and solutions. This book will help analysts understand the contribution of decision-analytic modelling to the evaluation of health care programmes. ABOUT THE SERIES: Economic evaluation of health interventions is a growing specialist field, and this series of practical handbooks will tackle, in-depth, topics superficially addressed in more general health economics books. Each volume will include illustrative material, case histories and worked examples to encourage the reader to apply the methods discussed, with supporting material provided online. This series is aimed at health economists in academia, the pharmaceutical industry and the health sector, those on advanced health economics courses, and health researchers in associated fields.
This book presents general methods for the design of economic model predictive control (EMPC) systems for broad classes of nonlinear systems that address key theoretical and practical considerations including recursive feasibility, closed-loop stability, closed-loop performance, and computational efficiency. Specifically, the book proposes: Lyapunov-based EMPC methods for nonlinear systems; two-tier EMPC architectures that are highly computationally efficient; and EMPC schemes handling explicitly uncertainty, time-varying cost functions, time-delays and multiple-time-scale dynamics. The proposed methods employ a variety of tools ranging from nonlinear systems analysis, through Lyapunov-based control techniques to nonlinear dynamic optimization. The applicability and performance of the proposed methods are demonstrated through a number of chemical process examples. The book presents state-of-the-art methods for the design of economic model predictive control systems for chemical processes.In addition to being mathematically rigorous, these methods accommodate key practical issues, for example, direct optimization of process economics, time-varying economic cost functions and computational efficiency. Numerous comments and remarks providing fundamental understanding of the merging of process economics and feedback control into a single framework are included. A control engineer can easily tailor the many detailed examples of industrial relevance given within the text to a specific application. The authors present a rich collection of new research topics and references to significant recent work making Economic Model Predictive Control an important source of information and inspiration for academics and graduate students researching the area and for process engineers interested in applying its ideas.
The aim of this volume is to consider intertemporal and strategic issues in the formulation of economic policy so that dynamic game methodology is appropriate. When changes in economic policy are evaluated the reactions and expectations of other economic agents cannot be ignored, and in a dynamic setting issues like time inconsistency, subgame perfectness, reputation and information become important.The papers contained in this volume are the revised versions of those presented at a conference held in 1988 at Tilburg University, The Netherlands. They include methodological contributions and strategic analyses of macroeconomic policy, resource economics, international policy coordination and the arms race.
This volume is devoted to models and methods in multiple objectives decision making. The importance of the multiple dimensions of decision making was first recognised during the 1960s and since then progress has been made in that theoretical or application oriented contributions may now be categorized under two main headings:- Multiattribute Decision Making (MADM) which concerns the sorting, the ranking or the evaluation of objects of choice according to several criteria and Multiobjective Decision Making (MODM) which deals with the vector optimization in mathematical programming. The above are also presented in the context of various applications, namely banking, environment, health, manpower, media, portfolio and traffic control, resulting in a book for a wide variety of readers.
This book consists of three parts: Part One is composed of two introductory chapters. The first chapter provides an instrumental varible interpretation of the state space time series algorithm originally proposed by Aoki (1983), and gives an introductory account for incorporating exogenous signals in state space models. The second chapter, by Havenner, gives practical guidance in apply ing this algorithm by one of the most experienced practitioners of the method. Havenner begins by summarizing six reasons state space methods are advanta geous, and then walks the reader through construction and evaluation of a state space model for four monthly macroeconomic series: industrial production in dex, consumer price index, six month commercial paper rate, and money stock (Ml). To single out one of the several important insights in modeling that he shares with the reader, he discusses in Section 2ii the effects of sampling er rors and model misspecification on successful modeling efforts. He argues that model misspecification is an important amplifier of the effects of sampling error that may cause symplectic matrices to have complex unit roots, a theoretical impossibility. Correct model specifications increase efficiency of estimators and often eliminate this finite sample problem. This is an important insight into the positive realness of covariance matrices; positivity has been emphasized by system engineers to the exclusion of other methods of reducing sampling error and alleviating what is simply a finite sample problem. The second and third parts collect papers that describe specific applications.