Download Free System Level Design With Rosetta Book in PDF and EPUB Free Download. You can read online System Level Design With Rosetta and write the review.

The steady and unabated increase in the capacity of silicon has brought the semiconductor industry to a watershed challenge. Now a single chip can integrate a radio transceiver, a network interface, multimedia functions, all the "glue" needed to hold it together as well as a design that allows the hardware and software to be reconfigured for future applications. Such complex heterogeneous systems demand a different design methodology. A consortium of industrial and government labs have created a new language and a new design methodology to support this effort. Rosetta permits designers to specify requirements and constraints independent of their low level implementation and to integrate the designs of domains as distinct as digital and analog electronics, and the mechanical, optical, fluidic and thermal subsystems with which they interact.In this book, Perry Alexander, one of the developers of Rosetta, provides a tutorial introduction to the language and the system-level design methodology it was designed to support.* The first commercially published book on this system-level design language* Teaches you all you need to know on how to specify, define, and generate models in Rosetta* A presentation of complete case studies analyzing design trade-offs for power consumption, security requirements in a networking environment, and constraints for hardware/software co-design
With the omnipresence of micro devices in our daily lifes embedded software has gained tremendous importance in both science and industry. This volume contains 34 invited papers from the First International Workshop on Embedded Systems. They present latest research results from different areas of computer science that are traditionally distinct but relevant to embedded software development (such as, for example, component based design, functional programming, real-time Java, resource and storage allocation, verification). Each paper focuses on one topic, showing the inter-relationship and application to the design and implementation of embedded software systems.
The demands of increasingly complex embedded systems and associated performance computations have resulted in the development of heterogeneous computing architectures that often integrate several types of processors, analog and digital electronic components, and mechanical and optical components—all on a single chip. As a result, now the most prominent challenge for the design automation community is to efficiently plan for such heterogeneity and to fully exploit its capabilities. A compilation of work from internationally renowned authors, Model-Based Design for Embedded Systems elaborates on related practices and addresses the main facets of heterogeneous model-based design for embedded systems, including the current state of the art, important challenges, and the latest trends. Focusing on computational models as the core design artifact, this book presents the cutting-edge results that have helped establish model-based design and continue to expand its parameters. The book is organized into three sections: Real-Time and Performance Analysis in Heterogeneous Embedded Systems, Design Tools and Methodology for Multiprocessor System-on-Chip, and Design Tools and Methodology for Multidomain Embedded Systems. The respective contributors share their considerable expertise on the automation of design refinement and how to relate properties throughout this refinement while enabling analytic and synthetic qualities. They focus on multi-core methodological issues, real-time analysis, and modeling and validation, taking into account how optical, electronic, and mechanical components often interface. Model-based design is emerging as a solution to bridge the gap between the availability of computational capabilities and our inability to make full use of them yet. This approach enables teams to start the design process using a high-level model that is gradually refined through abstraction levels to ultimately yield a prototype. When executed well, model-based design encourages enhanced performance and quicker time to market for a product. Illustrating a broad and diverse spectrum of applications such as in the automotive aerospace, health care, consumer electronics, this volume provides designers with practical, readily adaptable modeling solutions for their own practice.
As organizations and research institutions continue to emphasize model-driven engineering (MDE) as a first-class approach in the software development process of complex systems, the utilization of software in multiple domains and professional networks is becoming increasingly vital. Advances and Applications in Model-Driven Engineering explores this relatively new approach in software development that can increase the level of abstraction of development of tasks. This publication covers the issues of bridging the gaps between various disciplines within software engineering and computer science. Professionals, researchers, and students will discover the most current tools and techniques available in the field to maximize efficiency of model-driven software development.
This is the first handbook to cover comprehensively both software engineering and knowledge engineering -- two important fields that have become interwoven in recent years. Over 60 international experts have contributed to the book. Each chapter has been written in such a way that a practitioner of software engineering and knowledge engineering can easily understand and obtain useful information. Each chapter covers one topic and can be read independently of other chapters, providing both a general survey of the topic and an in-depth exposition of the state of the art. Practitioners will find this handbook useful when looking for solutions to practical problems. Researchers can use it for quick access to the background, current trends and most important references regarding a certain topic.The handbook consists of two volumes. Volume One covers the basic principles and applications of software engineering and knowledge engineering.Volume Two will cover the basic principles and applications of visual and multimedia software engineering, knowledge engineering, data mining for software knowledge, and emerging topics in software engineering and knowledge engineering.
For the new millenium, Wai-Kai Chen introduced a monumental reference for the design, analysis, and prediction of VLSI circuits: The VLSI Handbook. Still a valuable tool for dealing with the most dynamic field in engineering, this second edition includes 13 sections comprising nearly 100 chapters focused on the key concepts, models, and equations. Written by a stellar international panel of expert contributors, this handbook is a reliable, comprehensive resource for real answers to practical problems. It emphasizes fundamental theory underlying professional applications and also reflects key areas of industrial and research focus. WHAT'S IN THE SECOND EDITION? Sections on... Low-power electronics and design VLSI signal processing Chapters on... CMOS fabrication Content-addressable memory Compound semiconductor RF circuits High-speed circuit design principles SiGe HBT technology Bipolar junction transistor amplifiers Performance modeling and analysis using SystemC Design languages, expanded from two chapters to twelve Testing of digital systems Structured for convenient navigation and loaded with practical solutions, The VLSI Handbook, Second Edition remains the first choice for answers to the problems and challenges faced daily in engineering practice.
Este libro presenta los desafíos planteados por las nuevas y sumamente poderosas tecnologías de integración de sistemas electrónicos, que están en la base de los cambios sociales hacia lo que llaman la Sociedad de la Información; en la que los dispositivos electrónicos se harán una parte incorporada de la vida diaria, encajados en casi cada producto. Es necesario un conocimiento cuidadoso de los desafíos para aprovechar la amplia gama de ocasiones ofrecidas por tales capacidades de integración y las correspondientes posibilidades de diseño de sistemas electrónicos.
System-on-Chip Methodologies & Design Languages brings together a selection of the best papers from three international electronic design language conferences in 2000. The conferences are the Hardware Description Language Conference and Exhibition (HDLCon), held in the Silicon Valley area of USA; the Forum on Design Languages (FDL), held in Europe; and the Asia Pacific Chip Design Language (APChDL) Conference. The papers cover a range of topics, including design methods, specification and modeling languages, tool issues, formal verification, simulation and synthesis. The results presented in these papers will help researchers and practicing engineers keep abreast of developments in this rapidly evolving field.
A tutorial approach to using the UML modeling language in system-on-chip design Based on the DAC 2004 tutorial, applicable for students and professionals Contributions by top-level international researchers The best work at the first UML for SoC workshop Unique combination of both UML capabilities and SoC design issues Condenses research and development ideas that are only found in multiple conference proceedings and many other books into one place Will be the seminal reference work for this area for years to come
This book arises from experience the authors have gained from years of work as industry practitioners in the field of Electronic System Level design (ESL). At the heart of all things related to Electronic Design Automation (EDA), the core issue is one of models: what are the models used for, what should the models contain, and how should they be written and distributed. Issues such as interoperability and tool transportability become central factors that may decide which ones are successful and those that cannot get sufficient traction in the industry to survive. Through a set of real examples taken from recent industry experience, this book will distill the state of the art in terms of System-Level Design models and provide practical guidance to readers that can be put into use. This book is an invaluable tool that will aid readers in their own designs, reduce risk in development projects, expand the scope of design projects, and improve developmental processes and project planning.