Download Free Synthesis Of Novel Inorganic Fluorine Compounds By Direct Fluorination Book in PDF and EPUB Free Download. You can read online Synthesis Of Novel Inorganic Fluorine Compounds By Direct Fluorination and write the review.

Modern Synthesis Processes and Reactivity of Fluorinated Compounds focuses on the exceptional character of fluorine and fluorinated compounds. This comprehensive work explores examples taken from all classes of fluorine chemistry and illustrates the extreme reactivity of fluorinating media and the peculiar synthesis routes to fluorinated materials. The book provides advanced and updated information on the latest synthesis routes to fluorocompounds and the involved reaction mechanisms. Special attention is given to the unique reactivity of fluorine and fluorinated media, along with the correlation of those properties to valuable applications of fluorinated compounds. - Contains quality content edited, and contributed, by leading scholars in the field - Presents applied guidance on the preparation of original fluorinated compounds, potentially transferable from the lab scale to industrial applications - Provides practical synthesis information for a wide audience interested in fluorine compounds in many branches of chemistry, materials science, and physics
The definitive guide to creating fluorine-based compounds—and the materials of tomorrow Discovered as an element by the French chemist Henri Moissan in 1886, through electrolysis of potassium fluoride in anhydrous hydrogen fluoride—"le fluor," or fluorine, began its chemical history as a substance both elusive and dangerous. With a slight pale yellow hue, fluorine is at room temperature a poisonous diatomic gas. Resembling a spirit from a chemical netherworld, fluorine is highly reactive, difficult to handle, yet very versatile as a reagent—with the power to form compounds with almost any other element. Comprising 20% of pharmaceutical products and 30% of agrochemical compounds, as well as playing a key role in electric cars, electronic devices, and space technology, compounds containing fluorine have grown in importance across the globe. Learning how to safely handle fluorine in the preparation of innovative new materials—with valuable new properties—is of critical importance to chemists today. Bringing together the research and methods of leading scientists in the fluorine field, Efficient Preparations of Fluorine Compounds is the definitive manual to creating, and understanding the reaction mechanisms integral to a wide variety of fluorine compounds. With sixty-eight contributed chapters, the book's extensive coverage includes: Preparation of Elemental Fluorine Synthesis Methods for Exotic Inorganic Fluorides with Varied Applications Introduction of Fluorine into Compounds via Electrophilic and Nucleophilic Reactions Direct Fluorination of Organic Compounds with Elemental Fluorine Efficient Preparations of Bioorganic Fluorine Compounds Asymmetric Fluorocyclization Reactions Preparations of Rare Earth Fluorosulfides and Oxyfluorosulfides The book offers methods and results that can be reproduced by students involved in advanced studies, as well as practicing chemists, pharmaceutical scientists, biologists, and environmental researchers. The only chemical resource of its kind, Efficient Preparations of Fluorine Compounds—from its first experiment to its last—is a unique window into the centuries old science of fluorine and the limitless universe of fluorine-based compounds.
The Curious World of Fluorinated Molecules: Molecules Containing Fluorine is the sixth volume in the Progress in Fluorine Science series and is edited by the world-renowned scientist Konrad Seppelt. Dr. Seppelt brings together a team of global experts to uncover the multifaceted nature of the most electronegative element in the Periodic Table. The book explores the fascinating world of unpredictable, fluorine-containing molecules through their discoveries, path to recognition, current state of the art, and impact on the broader fields of fluorinated materials development. This volume will inspire and energize researchers, future scientists, and educators working in fluorine chemistry. - Highlights the current state of fundamental research of fluorinated molecules that either helped to rewrite the fundamental rules of chemistry or impacted modern material technologies - Features contributions from a global team of leading experts in the field - Provides a unique combination of the historical and current examples that explain the unique role that fluorine can play in advancing our understanding of the scientific method at large
Electronic, optical, mechanical and medical appliances are just a few examples of modern applications that use tantalum and niobium. In Chemistry of Tantalum and Niobium Fluoride Compounds, the author draws on thirty years' experience to produce the first ever monograph to systemize and summarize the data available on tantalum and niobium fluoride compounds. This comprehensive reference source offers a rich variety of study methodology and is invaluable to researchers examining the chemistry of fluorides, as well as teachers and students in chemistry and metallurgy.* Collects the latest research on the chemistry of complex fluorides and oxyfluorides of Tantalum and Niobium.* Covers both theory and application of Tantalum and Niobium Fluoride Chemistry* Is suitable for tantalum and niobium producers, researchers studying the chemistry of fluorides, as well as teachers and students in chemistry and metallurgy
Fluorinated Materials for Energy Conversion offers advanced information on the application of fluorine chemistry to energy conversion materials for lithium batteries, fuel cells, solar cells and so on. Fluorine compounds and fluorination techniques have recently gained important roles in improving the electrochemical characteristics of such energy production devices. The book therefore focuses on new batteries with high performance, the improvements of cell performance and the improvement of electrode and cell characteristics. The authors present new information on the effect of fluorine and how to make use of fluorination techniques and fluorine compounds. With emphasis on recent developments, this book is suitable for students, researchers and engineers working in chemistry, materials science and electrical engineering. - Contains practical information, supported by examples - Provides an update on recent developments in the field - Written by specialists working in fluorine chemistry, electrochemistry, polymer and solid state chemistry
This volume brings together contributions by leading researchers covering a wide scope so characteristic of fluorine chemistry. It is a monograph of historical character comprising personalized accounts of progress and events in areas of particular interest.There is also much to interest and instruct chemists from other disciplines as a good proportion of the chapters contain a considerable amount of 'hard' referenced information relating to modern organic, organoelemental and inorganic chemistry. Historians of chemistry and technology will no doubt be tempted to dip into this book, and surely whoever addresses the task of commemorating Moissan's achievement at the 150-years stage will bless us all in some measure for its existence.
This volume reviews the recent advances in formation of C-F bonds and X-F bonds (X = heteroatom) to produce useful fluorinated molecules for pharmaceuticals, materials and more. Reactions and methods associated with fluorination, including monofluorination, difluorination, trifluorination and other polyfluorination that have emerged within the past few years are systematically discussed. With contributions from front-line researchers in this field from both academia and industry, this book provides a valuable resource for scholars, graduate students as well as professionals.
Photonic and Electronic Properties of Fluoride Materials: Progress in Fluorine Science, the first volume in this new Elsevier series, provides an overview of the important optical, magnetic, and non-linear properties of fluoride materials. Beginning with a brief review of relevant synthesis methods from single crystals to nanopowders, this volume offers valuable insight for inorganic chemistry and materials science researchers. Edited and written by leaders in the field, this book explores the practical aspects of working with these materials, presenting a large number of examples from inorganic fluorides in which the type of bonding occurring between fluorine and transition metals (either d- or 4f-series) give rise to peculiar properties in many fundamental and applicative domains. This one-of-a-kind resource also includes several chapters covering functional organic fluorides used in nano-electronics, in particular in liquid crystal devices, in organic light-emitting diodes, or in organic dyes for sensitized solar cells. The book describes major advances and breakthroughs achieved by the use of fluoride materials in important domains such as superconductivity, luminescence, laser properties, multiferroism, transport properties, and more recently, in fluoro-perovskite for dye-sensitized solar cells and inorganic fluoride materials for NLO, and supports future development in these varied and key areas. The book is edited by Alain Tressaud, past chair and founder of the CNRS French Fluorine Network. Each book in the collection includes the work of highly-respected volume editors and contributors from both academia and industry to bring valuable and varied content to this active field. Provides unique coverage of the physical properties of fluoride materials for chemists and material scientists Begins with a brief review of relevant synthesis methods from single crystals to nanopowders Includes valuable information about functional organic fluorides used in nano-electronics, in particular in liquid crystal devices, in organic light-emitting diodes, or in organic dyes for sensitized solar cells
In recent years, organo-fluorine chemistry has made a marked impact on the design and synthesis of a large variety of biologically active molecules, such as steroids, carbohydrates, amines, amino acids, peptides and other natural products. Naturally occurring amino acids play a pivotal role in living systems, and therefore synthetic fluorine-containing amino acids have been of significant interest to researchers working towards the understanding and modification of physiological processes. Fluorine-containing Amino Acids: is the first volume devoted to the synthesis and properties of fluorine-containing amino acids pays special attention to the preparation of enantiomerically pure acids (which are essential to the modern pharmaceutical industry) deals with a rapidly expanding field of research has been written by experienced researchers who are responsible for many developments in the field highlights the interdisciplinary nature of this topic Fluorine-containing Amino Acids is the only dedicated reference in this subject and will be essential for researchers in synthetic organic, peptide, natural product, and medicinal chemistry and biochemistry.
The definitive guide to creating fluorine-based compounds—and the materials of tomorrow Discovered as an element by the French chemist Henri Moissan in 1886, through electrolysis of potassium fluoride in anhydrous hydrogen fluoride—"le fluor," or fluorine, began its chemical history as a substance both elusive and dangerous. With a slight pale yellow hue, fluorine is at room temperature a poisonous diatomic gas. Resembling a spirit from a chemical netherworld, fluorine is highly reactive, difficult to handle, yet very versatile as a reagent—with the power to form compounds with almost any other element. Comprising 20% of pharmaceutical products and 30% of agrochemical compounds, as well as playing a key role in electric cars, electronic devices, and space technology, compounds containing fluorine have grown in importance across the globe. Learning how to safely handle fluorine in the preparation of innovative new materials—with valuable new properties—is of critical importance to chemists today. Bringing together the research and methods of leading scientists in the fluorine field, Efficient Preparations of Fluorine Compounds is the definitive manual to creating, and understanding the reaction mechanisms integral to a wide variety of fluorine compounds. With sixty-eight contributed chapters, the book's extensive coverage includes: Preparation of Elemental Fluorine Synthesis Methods for Exotic Inorganic Fluorides with Varied Applications Introduction of Fluorine into Compounds via Electrophilic and Nucleophilic Reactions Direct Fluorination of Organic Compounds with Elemental Fluorine Efficient Preparations of Bioorganic Fluorine Compounds Asymmetric Fluorocyclization Reactions Preparations of Rare Earth Fluorosulfides and Oxyfluorosulfides The book offers methods and results that can be reproduced by students involved in advanced studies, as well as practicing chemists, pharmaceutical scientists, biologists, and environmental researchers. The only chemical resource of its kind, Efficient Preparations of Fluorine Compounds—from its first experiment to its last—is a unique window into the centuries old science of fluorine and the limitless universe of fluorine-based compounds.