Download Free Synthesis Chemical And Catalytic Properties Of Transition Metal Complexes With Polydentate Phosphine Ligands Book in PDF and EPUB Free Download. You can read online Synthesis Chemical And Catalytic Properties Of Transition Metal Complexes With Polydentate Phosphine Ligands and write the review.

Pincer Compounds: Chemistry and Applications offers valuable state-of-the-art coverage highlighting highly active areas of research—from mechanistic work to synthesis and characterization. The book focuses on small molecule activation chemistry (particularly H2 and hydrogenation), earth abundant metals (such as Fe), actinides, carbene-pincers, chiral catalysis, and alternative solvent usage. The book covers the current state of the field, featuring chapters from renowned contributors, covering four continents and ranging from still-active pioneers to new names emerging as creative strong contributors to this fascinating and promising area. Over a decade since the publication of Morales-Morales and Jensen's The Chemistry of Pincer Compounds (Elsevier 2007), research in this unique area has flourished, finding a plethora of applications in almost every single branch of chemistry—from their traditional application as very robust and active catalysts all the way to potential biological and pharmaceutical applications. - Describes the chemistry and applications of this important class of organometallic and coordination compounds - Includes contributions from global leaders in the field, featuring pioneers in the area as well as emerging experts conducting exciting research on pincer complexes - Highlights areas of promising and active research, including small molecule activation, earth abundant metals, and actinide chemistry
Pincer complexes are formed by the binding of a chemical structure to a metal atom with at least one carbon-metal bond. Usually the metal atom has three bonds to a chemical backbone, enclosing the atom like a pincer. The resulting structure protects the metal atom and gives it unique properties.The last decade has witnessed the continuous growth in the development of pincer complexes. These species have passed from being curiosity compounds to chemical chameleons able to perform a wide variety of applications. Their unique metal bound structures provide some of the most active catalysts yet known for organic transformations involving the activation of bonds. The Chemistry of Pincer Compounds details use of pincer compounds including homogeneous catalysis, enantioselective organic transformations, the activation of strong bonds, the biological importance of pincer compounds as potential therapeutic or pharmaceutical agents, dendrimeric and supported materials.* Describes the chemistry and applications of this important class of organometallic and coordination compounds* Covers the areas in which pincer complexes have had an impact* Includes information on more recent and interesting pincer compounds not just those that are well-known
Im Laufe der vergangenen 35 Jahre wurden unzahlige Synthesewege entwickelt, bei denen Ubergangsmetallkomplexe entweder als Reagenzien oder als Katalysatoren fungieren. Dieses Buch bietet besonders denjenigen Synthesechemikern interessante und moderne Einblicke, die bisher noch nicht mit den vielfaltigen Moglichkeiten der Organometallchemie mit Ubergangsmetallen vertraut sind. Zu wichtigen ubergangsmetallkatalysierten Reaktionen werden Anwendungsbeispiele diskutiert. (01/00)
Organic synthesis with lanthanides has experienced enormous growth in the last ten years. Numerous synthetic reactions have been explored by the use of lanthanide reagents, and some of these have become indispensablein modern organic synthesis. This book describes the remarkable scope and potential of these reagents, addressing this rapidly growing area from a practical point-of-view. The author has summarized synthetically useful and novel organic transformations, emphasizing the characteristic properties of lanthanide reagents. These transformations are concisely and skillfully presented in many schemes and tables, with actual illustrative preparations. The coverage includes the use of lanthanide metals, the powerful divalent reagents such as samarium (II) iodide, the key trivalent reagents and their particular role as catalysts in selective reductions and cycloadditions, and the tetravalent lanthanides as oxidants. Describes the remarkable scope and potential of lanthanide reagents from a practical point-of-view Presents actual experimental procedures Provides a concise presentation of useful and novel organic transformations in table format
This annual review of the literature presents a comprehensive and critical survey of the vast field of study involving organophosphorus compounds, from phosphines and related P-C bonded compounds to phosphorus acids, phosphine chalcogenides and nucleotides. The Editors have added to the content with a timely chapter on the recent developments in green synthetic approaches in organophosphorus chemistry to reflect current interests in the area. With an emphasis on interdisciplinary content, this book is aimed at the worldwide organic chemistry and engineering research communities.
Each chapter of Phosphorus Compounds: Advanced Tools in Catalysis and Material Sciences have been carefully selected by the editors in order to represent a state-of-the-art overview of how phosphorus chemistry can provide solutions in various fields of applications. The editors have assembled an international array of world-renowned scientists and each chapter is written by experts in the fields of synthetic chemistry, homogeneous catalysis, dendrimers, theoretical calculations, materials science, and medicinal chemistry with a special focus on the chemistry of phosphorus compounds. Phosphorus Compounds: Advanced Tools in Catalysis and Material Sciences is of interest to a general readership ranging from advanced university course students to experts in academia and industry.
Over the last 60 years the increasing knowledge of transition metal chemistry has resulted in an enormous advance of homogeneous catalysis as an essential tool in both academic and industrial fields. Remarkably, phosphorus(III) donor ligands have played an important role in several of the acknowledged catalytic reactions. The positive effects of phosphine ligands in transition metal homogeneous catalysis have contributed largely to the evolution of the field into an indispensable tool in organic synthesis and the industrial production of chemicals. This book aims to address the design and synthesis of a comprehensive compilation of P(III) ligands for homogeneous catalysis. It not only focuses on the well-known traditional ligands that have been explored by catalysis researchers, but also includes promising ligand types that have traditionally been ignored mainly because of their challenging synthesis. Topics covered include ligand effects in homogeneous catalysis and rational catalyst design, P-stereogenic ligands, calixarenes, supramolecular approaches, solid phase synthesis, biological approaches, and solubility and separation. Ligand families covered in this book include phosphine, diphosphine, phosphite, diphosphite, phosphoramidite, phosphonite, phosphinite, phosphole, phosphinine, phosphinidenene, phosphaalkenes, phosphaalkynes, P-chiral ligands, and cage ligands. Each ligand class is accompanied by detailed and reliable synthetic procedures. Often the rate limiting step in the application of ligands in catalysis is the synthesis of the ligands themselves, which can often be very challenging and time consuming. This book will provide helpful advice as to the accessibility of ligands as well as their synthesis, thereby allowing researchers to make a more informed choice. Phosphorus(III) Ligands in Homogeneous Catalysis: Design and Synthesis is an essential overview of this important class of catalysts for academic and industrial researchers working in catalyst development, organometallic and synthetic chemistry.
This second edition offers easy access to the field of organotransition metal chemistry. The book covers the basics of transition metal chemistry, giving a practical introduction to organotransition reaction mechanisms.
With an enormous velocity, olefin polymerization has expanded to one of the most significant fields in polymers since the first industrial use about 50 years ago. In 2005, 100 million tons of polyolefins were produced - the biggest part was catalyzed by metallorganic compounds. The Hamburg Macromolecular Symposium 2005 with the title "Olefin Polymerization" involved topics such as new catalysts and cocatalysts, kinetics, mechanism and polymer reaction engineering, synthesis of special polymers, and characterization of polyolefins. The conference combined scientists from different disciplines to discuss latest research results of polymers and to offer each other the possibility of cooperation. This is reflected in this volume, which contains invited lectures and selected posters presented at the symposium.