Download Free Synthesis And Characterization Of Novel Nonlinear Optical Materials Book in PDF and EPUB Free Download. You can read online Synthesis And Characterization Of Novel Nonlinear Optical Materials and write the review.

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Mathematical methods play a significant role in the rapidly growing field of nonlinear optical materials. This volume discusses a number of successful or promising contributions. The overall theme of this volume is twofold: (1) the challenges faced in computing and optimizing nonlinear optical material properties; and (2) the exploitation of these properties in important areas of application. These include the design of optical amplifiers and lasers, as well as novel optical switches. Research topics in this volume include how to exploit the magnetooptic effect, how to work with the nonlinear optical response of materials, how to predict laser-induced breakdown in efficient optical devices, and how to handle electron cloud distortion in femtosecond processes.
Synthesis, Modelling and Characterization of 2D Materials and Their Heterostructures provides a detailed discussion on the multiscale computational approach surrounding atomic, molecular and atomic-informed continuum models. In addition to a detailed theoretical description, this book provides example problems, sample code/script, and a discussion on how theoretical analysis provides insight into optimal experimental design. Furthermore, the book addresses the growth mechanism of these 2D materials, the formation of defects, and different lattice mismatch and interlayer interactions. Sections cover direct band gap, Raman scattering, extraordinary strong light matter interaction, layer dependent photoluminescence, and other physical properties. - Explains multiscale computational techniques, from atomic to continuum scale, covering different time and length scales - Provides fundamental theoretical insights, example problems, sample code and exercise problems - Outlines major characterization and synthesis methods for different types of 2D materials
This volume exposes the chemistry community to the critical role that chemistry can and must play in nonlinear optics research. In addition, it brings together those researchers who synthesize and characterize materials from a variety of systems, with those who build devices, giving chemists, physicists, and engineers a greater appreciation for the opportunities that lie ahead in understanding and developing nonlinear optical materials. The volume begins with a discussion of polarizability and hyperpolarizability from the view of a chemist. Tutorial chapters dealing with the fundamental structures and properties of second- and third-order nonlinear optical materials, measurement and characterization of these systems, theoretical considerations, application of these systems to devices, and overviews of the current state of affairs in both organic and inorganic nonlinear optical materials follow.
This volume brings together contributions from world renowned researchers on molecular nonlinear optics. It takes as its impetus work done over the last five years in which newly developed optoelectronic devices havedeepened our understanding of the fundamental physics and chemistry underlying these materials. Organic materials involving thin films, polymers, and resulting devices will be emphasized.
This book covers recent advancements in the field of polymer science and technology. Frontiers areas, such as polymers based on bio-sources, polymer based ferroelectrics, polymer nanocomposites for capacitors, food packaging and electronic packaging, piezoelectric sensors, polymers from renewable resources, superhydrophobic materials and electrospinning are topics of discussion. The contributors to this book are expert researchers from various academic institutes and industries from around the world.
Nonlinear Optical Properties of Organic Molecules and Crystals, Volume 1 discusses the nonlinear optical effects in organic molecules and crystals, providing a classical distinction between quadratic and cubic processes. This book begins with a general overview of the basic properties of organic matter, followed by a review on the benefits derived from quantum-chemistry-based models and growth and characterization of high quality, bulk organic crystals and waveguided structures. A case study focusing on a specific material, namely urea, which exemplifies a situation in which transparency in the UV region has been purposely traded for nonlinear efficiency is also deliberated. This text concludes with a description of a type of trade-off between the unpredictable orientation of molecules in crystalline media, polarity of liquid-crystalline structures, and dominant electronic contribution to the electro-optic effect. This publication is beneficial to solid-state physicists and chemists concerned with nonlinear optical properties of organic molecules and crystals.
""Furnishes table of nonlinear optical properties of organic substances as well as experimental procedures for measuring the nonlinearity of the elements tabulated, including composite materials-offering support for scientists and engineers involved in characterizing, optimizing, and producing materials for manufacturing optical devices.
This book reviews the latest research, development, and future potential of polyimides and green polymer chemistry. It combines the major interdisciplinary research in this area. Polymers with imidic structure, known as polyimides, are widely investigated owing to their practical implications in numerous industrial sectors. The book explains why polyimides offer versatility unparalleled in comparison to most other classes of macromolecules. In addition, developments in green polymer chemistry in this area have been stimulated by health and environmental concerns, interest in sustainability, desire to decrease the dependence on petroleum, and opportunities to design and produce “green” products and processes. Major advances include new uses of green processing methodologies, and green polymeric products. Imidic Polymers and Green Polymer Chemistry: New Technology and Developments in Process and Product is targeted to scientists, engineers, and students who are involved or interested in green polymer chemistry and imidic polymers. This book will serve as a valuable reference for those with an interest in synthesis of polyimides and the chemistry and physical chemistry of polyimide compounds.
This book is a practical guide to optical, optoelectronic, and semiconductor materials and provides an overview of the topic from its fundamentals to cutting-edge processing routes to groundbreaking technologies for the most recent applications. The book details the characterization and properties of these materials. Chemical methods of synthesis are emphasized by the authors throughout the publication. Describes new materials and updates to older materials that exhibit optical, optoelectronic and semiconductor behaviors; Covers the structural and mechanical aspects of the optical, optoelectronic and semiconductor materials for meeting mechanical property and safety requirements; Includes discussion of the environmental and sustainability issues regarding optical, optoelectronic, and semiconductor materials, from processing to recycling.